Divergence in Femoral Tunnel during Arthroscopic Single Incision Anterior Cruciate Ligament Reconstruction Using by Bone-Patellar Tendon-Bone

Chung Nam Kang, M.D., Dong Wook Kim, M.D. and Jae Doo Yoo, M.D.

Department of Orthopaedics, College of Medicine, Ewha Womans University, Seoul, Korea

Divergent placement of the femoral interference screw has been described as a major pitfall in single incision endoscopic reconstruction of the anterior cruciate ligament. This study reviews the radiographic results in 30 consecutive endoscopic single-incision ACL reconstructions using interference screw fixation to find a method to reduce the divergent femoral screw fixation. We measured the angles which were determined by a line through axis of femoral bone block and axis of interference screw in anteroposterior and lateral view of knee(APD/LD), through axis of femoral tunnel and axis of tibial tunnel in the full extension-anteposterior view(APT), through the longitudinal axis of distal femoral shaft and axis of femoral tunnel in the anteroposterior and lateral view(APFT/LFT). Average LD(4.967±62°) was significantly larger than average APD(1.303±13°)(P=0.008). Significant correlation was present between APD and APFT(γ=-0.3882, P=0.034), between LD and LFT(γ=0.6933, P=0.000) and other variables had no significant correlation. The femoral divergence in the anteroposterior plane occurred in the case with small angle between longitudinal axis of femoral shaft and that of femoral tunnel, and vice versa in lateral plane. During drilling of femoral tunnel, more than 90° flexion causes LFT to increase and the risk of femoral divergence increases. Therefore, in the anteroposterior plane, angle between femoral tunnel and longitudinal axis of femoral shaft should be made as large as possible and flexion of knee should not be more than 90° during drilling of femoral tunnel.

Key Words : Knee, Endoscopic ACL reconstruction, Femoral divergence
서 론

최근에는 관절경을 통하여 하나의 절개만으로 슬개골과 질골의 일부가 부속된 슬개골골(bone-patella tendon-bone)을 이용하는 전방십자리내 재건술이 보편화되고 있다. 그러나 성공적인 결과를 얻기 위해서는 수술 시 여러 가지 기술적인 문제들을 잘 해결해야 한다는데, 그 중 이식한 슬개골의 건고한 고정은 수술 후의 초기 재활을 위하여 필수적인 요소이다. 슬개골을 이용한 전방십자리내 재건술 시 공여부를 고정하는 방법으로는 간접나사나를 이용하는 것이 가장 정확성이 큰 것으로 알려져 있다11). 간접나사의 사용은 Lambert12가 처음으로 소개하였는데, 그는 6.5 mm 직경의 AO 방사선 나사로 사용하였다. 그 후 Kurosaka 등13)가 9 mm 직경의 특수 고압판 나사를 소개하면서 보편화되었다. 그러나 간접나사를 이용할 때에도 공여부 골편의 상태, 크기 및 길이, 터널의 직경과 공여부 골편의 각각, 간접나사의 직경과 길이 등에 따라서 고정력 차이가 발생하여, 특히 대퇴골 터널에서 이식골과 간접나사 사이의 분기(divergence)는 건고한 고장을 얻지 못하여 수술의 실패를 초래할 수 있는 원인으로 지적하는 보고들이 있다14,15,16,17). 그러나 이러한 보고들은 대퇴골 터널에서의 이식골과 간접나사의 분기를 줄일 수 있는 해결책이 제시되어 있지 않다.

따라서 저자 등은 관절경을 이용한 전방십자리내 재건술 시 후 분기가 발생할 수 있는 요인에 대하여 술 후 방사선 사진을 분석하여 수술 시에 이러한 문제점을 줄일 수 있는 방법을 찾기로 하였다.

재료 및 방법

1996년 3월부터 1997년 1월까지 이화여자대학교 복동병원에서 자가 슬개골골 또는 동종 슬개골골을 이용하여 하나의 절개만으로 전방십자리내 재건술을 시행받은 환자 30명을 대상으로 하였다. 수술 시 대퇴골 터널을 만들 때에는 골편절의 각도를 70°-80°로 유지하고 대퇴골 터널로의 간접나사 삽입 시에는 골편절을 최대 굵고 상태로 하는 것을 원칙으로 하였다. 수술 후 전후면 및 측면 방사선 사진을 이용하여 대퇴골 터널 내에서 이식골의 장축과 간접나사의 장축이 이루는 각도 (APD/LD: anteroposterior divergence/lateral divergence)를 측정하였으며(Fig. 1), 슬개골골의 전방십자리내 재건술 시의 전후면 사진에서 대퇴골 터널의 장축과 경골 터널 장축과의 각도(AFT: angle between femoral tunnel and tibial tunnel)를 측정하였다(Fig. 2). 또한 전후면 및 측면 사진에서 대퇴골 터널의 정위 대퇴골의 장축과 이루는 각도(APFT/LFT: angle between femoral shaft and tunnel at AP view/at lateral view)를 측정하였다(Fig. 3). 이 때 대퇴골 터널과 경골 터널의 장축은 이식된 골편의 장축으로 하였으며, 전후면 사진에서 골편이 간접나사에 완전히 일치하여 보이지 않는 경우는 간접나사의 장축으로 측정하였다.

결과의 분석은 SPSS 통계 프로그램을 이용하였고, APD와 LD의 크기는 paired t-test를 이용하여 비교하였으며, APD와 LD가 각각 AFT, APFT, LFT의 크기와 연관이 되는지는 Pearson Correlation Coefficient(γ)를 구하여 확인하였다. 통계학적으로 의의가 있음을 P<0.05로 정의하였다.

결 과

전후면 사진에서의 분기(APD)는 1.30 ± 3.13° (0.0°-15.0°), 측면 사진에서의 분기(LD)는 4.96±7.62° (0.0°-22.0°)로 전후면에서 보다 측면에서의 분기가 크게 나타났으므로 통계학적으로 의의가 있었다(P=0.008). 총 30례 중 15례 (50%)에서 1° 이상의 분기가 발생하였으며, 8례 (26.7%)에서 전후면 사진에서의 분기가, 12례 (40%)에서 측면 사진에서의 분기가 발생하였으며, 5례에서는 양측 사진 모두에서 분기가 발생하였다. 전후면 사진에서의 분기는 1례에서 15°인 것을 제외하면 모두 10° 이하였으나, 측면 사진에서의 분기는 6례에서 15° 이상이었다.

전후면 사진에서 대퇴골 터널의 장축과 경골 터널 장축과의 각도(AFT)는 12.40±7.30° (1.0°-26.0°), 전후면 및 측면 사진에서 대퇴골 터널이
원위 대퇴골의 장축과 이루는 각도 APFT는 15.33±6.95° (2.0° - 27.0°), LFT는 36.57±
5.20° (26.0° - 45.0°)이었다.

전후면 사진에서의 분기(APD)는 전후면 사진
에서 대퇴골 터널이 원위 대퇴골의 장축과 이루는
각도(APFT)만이 통계학적으로 의미가 있었으
며, 이 때의 상관계수 γ는 -0.3882 ($p=0.034$)이었
다. 측면 사진에서의 분기(LD)는 측면 사진에서
대퇴골 터널이 원위 대퇴골의 장축과 이루는 각도
(LFT)와 통계학적으로 유의한 상관관계가 있었
으며, 이 때의 상관계수 γ는 0.6933 ($p=0.000$)이
었다. 그 외의 변수 사이에는 유의한 상관관계를
발견할 수 없었다. 따라서 전후면 사진에서의 대
퇴골 장축과 대퇴골 터널의 장축이 이루는 각도
(APFT)와 분기 사이의 관계가 γ값이 ‘-‘로 통계
학적 의미가 있으므로 이 각도가 작을수록 전후면
에서의 분기가 발생하기 쉽다고 해석할 수 있다.
또한 측면 방사선 사진에서는 대퇴골 장축과 대퇴
골 터널의 장축이 이루는 각도(LFT)가 클수록
측면에서의 분기가 발생할 확률이 높아진다고 할
수 있다. 특히 측면 방사선 사진에서 대퇴골 장축
과 대퇴골 터널의 장축이 이루는 각도(LFT)가
40° 이상이었던 9례 중 7례에서 측면에서의 분기
가 발생하였다(Table 1).

고 칠

간섭나사를 정확히 위치시키는 것은 전방십자인
대 재건술에서 이식골의 성공적인 고정을 위하여
매우 중요하다. 일반적으로 하나의 절개를 통한 전
방십자인대 재건술에서 대퇴골 터널을 경골 터널
을 통하여 만들기 때문에 대퇴골 터널에서 이식골
과 간섭나사의 분기가 발생하지 않기 위해서는 간
섭나사를 경골 터널을 통하여 삽입하는 것이 가장
이상적이다. 이 방법은 Paulos 등19과 Shaffer 등
20에 의해서 소개된 바 있으나, 이 방법을 사용하
Fig. 2. AFT angle is determined by a line through the long axis of the femoral tunnel and the axis of tibial tunnel.

이식골과 간접사나의 분기의 각도가 15° 이상이면 고정력에 문제가 발생할 수 있음을 보고하고 있다. Fulkerson 등은 돼지(porcine)를 이용한 동물실험에서 간접사나의 고정을 0°, 15°, 30°로 분
Fig. 3. APFT angle in anteroposterior view and LFT in lateral view were determined by a line through the long axis of the femoral tunnel and the axis of tibial tunnel.

기를 조정하여 비교한 결과, 30° 이상에서 심한 고정력의 실패를 보고하였다. Lemos 등48과 Jomha 등59도 동물 실험을 통하여 유사한 결과를 보고하였다. 그러나 Fanelli 등60은 분기의 반도나 크기와 이식골의 고정력과는 전혀 관계가 없다는 입상 결과를 보고하였다. 또한 Dworsky 등61도 73례의 전방 심장인대 재건술의 후향적인 연구를 통하여, 수술 시에 고정력의 문제가 없음 을 확인하면 대퇴골 터널에서 30° 이내의 분기는 고정력의 초기 실패를 초래하지 않다고 보고하였다. 그들은 그 이유로 푸기(funnel, wedge) 효과라는 표현을 써서 대퇴골 터널에서 이식골과 간섭나사의 응력(stress)이 터널의 원위부에 집중 되기 때문이라고 주장하였다. 임상적으로 필요한 이식골의 고정력이나, 이 고정력의 실패를 초래하는 분기의 각도는 아직 분명하지 않다. 따라서 이 식간의 골편과 간섭나사 사이의 분기를 최소화하여 최대 고정력을 얻기 위한 노력이 반드시 필요하다 하겠다62. Fanelli 등63은 97명의 환자에서 습개진 공여부의 결손 부위를 통하여 간섭나사를 삽입한 경우 46%, 전내측 구멍을 통한 경우에는 84%의 간섭나사의 분기 반도를 보고하였다. Brodie 등64는 경골 터널을 통하여 대퇴골 터널의 간섭나사를 삽입하는 방법으로 8%에서 분기가 발생하였으나, 15° 이상의 분기가 발생한 경우는 없었다고 하였다. 저자 등의 경우에는 총 30례 중 15례(50%)에서 1° 이상의 분기가 발생하였으며, 15° 이상인 경우는 7례(23%)이었다. 전후면에서 분기의 각도는 1.30±3.13° (0.0° -15.0°)이었고, 측면에서는 4.96±7.62° (0.0° -22.0°)로 전후면에서 보다 측면에서의 분기가 크게 나타났으며 통계학적으로 의미가 있었다.

대퇴골 터널에서 간섭나사 분기의 발생을 배제하기 위하여 Halbrecht와 Levy8는 전방 심장인대
제천일을 시행하는 동안 방사선 영상을 활용한 Image intensifier를 사용하여 터널의 길이와 각도를 수술 동안에 직접 확인할 것을 권하였다. 이들은 대퇴골 터널을 만들 때, 슬관절은 적어도 90°로 유지할 것을 권하였으며, Jackson 등은 슬관절을 약 70°로 굴곡시킨 상태에서 경골 터널을 통하여 대퇴골 터널을 만들 것을 권유하였다. 또한 Jackson 등은 대퇴골 터널로의 간접사와 삼각형 빌 슬관절을 약 110°로 굴곡시킬 것을 주장하였다. 그러나 이들 주장들은 모두 경험적인 중간 형태의 논문을 통한 주장이었다. 절차 등의 결과에서 보듯이 측면에서의 분리는 측면 방사선 사진에서 대퇴골 장축과 대퇴골 터널의 장축이 이루는 각도 (LFT)가 수술 후 발생 가능성 있게 되어 있다. 특히 측면 방사선 사진에서 대퇴골 장축과 대퇴골 터널의 장축이 이루는 각도가 40° 이상이었던 9례 중 7례에서 측면에서의 분기가 발생하였다. 이 각도는 대퇴골 터널을 만들 때 슬관절의 굴곡을 많이 할수록 커지게 되고, 이 때 대퇴골의 위치가 등장해 위치에서 전방으로 이동하게 된다.

따라서 본 논문의 의의는 경골투사선을 만들 때에 는 술가견의 경골부작에서 일정 거리를 두고 만들어야 하기, 슬관절은 너무 굴곡을 많이 한 상태로 대퇴골 터널을 만들 때에는 측면 사진에서의 분기에 발생 가능성이 높아진다는 것을 확인한 것에 있다. 대퇴골 터널에서 이식골과 간접사와 사이의 분기가 발생하였던 레들은 수술 시의 고정력과 싼 추시에서는 문제가 없었으나 더 많은 레와 원격 추시 후 결과를 분석하여 분기의 각도에 따른 임상적 의미를 찾는 것이 의미가 있을 것으로 생각된다.

결론

전후면 사진에서의 분기 (APD)는 전후면 방사 선 사진에서 대퇴골의 장축과 대퇴골 터널 사이의 각 (APPT)이 작을수록 분기가 발생할 수 있으며, 측면 사진에서의 분기 (LD)는 측면 방사선 사진에서 대퇴골 장축과 대퇴골 터널의 길이를 이루는 각 (LFT)이 클 때 발생할 확률이 높다. 따라서 수술 중 대퇴골 터널을 만들 때 전후방으로는 시작은 각도 11시, 좌측 1시 지점에서 하여 대퇴골 장축과 각도를 크게 하여야 전후방에서의 대퇴골 터널 분기를 예방할 수 있다. 측면에서는 대퇴골 터널이 후방 피질골을 관통하는 것을 피하기 위해 슬관절은 90° 이상 굴곡하여 대퇴골 터널을 만들면 측면 사진에서의 대퇴골 터널과 대퇴골 장축과의 각도가 증가함으로 간접사와 골편사이의 분기를 피할 수 없을 것으로 사료된다.

REFERENCES

9) Jackson DW, Kenna R, Simon TM and Kurzweil PR : Endoscopic ACL reconstruction. Ortho-