The Role of Y and Greater Trochanteric Growth Cartilage upon the Acetabular Development of Rabbits

—An Experimental Study—

Myung-Sang Moon, M.D., Young-Kyun Woo, M.D. and Jong-Dae Hwang, M.D.

Department of Orthopaedic Surgery, Catholic Medical College, Seoul, Korea

It has been known that osseous stability of the hip is dependent upon the inclination, anteverision and depth of acetabulum and also upon neck-shaft angle and anteverision of femur.

Acetabulum enlarges from two different growth centers: one from the concave articular surface cartilage and the other from the triradiate cartilage. The former contributes primarily to the thickness of acetabular wall, whereas the latter to the central enlargement of the acetabular socket.

Additionally the shape of acetabulum can be changed by deformity of the femoral head and neck, which can be explained by Wolff’s and Hueter-Volkmann’s laws. Yet there are still many factors to be clarified by clinical researchers in the future.

Authors in this experiment tried to clarify the role of triradiate cartilage and greater trochanteric growth plate upon the development of acetabulum.

The material used for this study consisted of 30 rabbits of both sexes, aged 8 weeks. Animals were divided into 3 groups, and each group consisted of 10 rabbits. In group I, hip was not injured and used as a control; in group II, right greater trochanter with its growth plate was destructed completely; in group III, triradiate cartilage of right side was destructed.

Subsequent to injury of Y cartilage or greater trochanter with its growth plate, radiographs of the pelvis including hips were obtained weekly on each rabbit over 6 weeks period, and to evaluate the effect of injury upon the hip development acetabular angle, C-E angle, and acetabular depth and width were measured. The following results were obtained;

*본 연구 논문은 1978년도 가톨릭 중앙의료원 학술연구비로써 이루어진 것임.
머릿말

사람의 비구가 출생시 대개 30도 이내한 것이 정상하면서 정상 감소함으로 대퇴골두를 잘 파주하게 되니 만일 감소하지 않는 경우에는 정상대 골두를 잘 파주할 수 없어 아탈구 내어는 원치를 입을 수가 된다. 이하간 짝이 비구와 대퇴골두는 밀착한 정상관계를 유지하여야 정상 발육이 가능하다. 즉 정상에 따라 비구가 충분히 발달하여 대퇴골두를 잘 파주하여야 정상에 따라 비구가 겹쳐지고 비구가 감소하여야 한다는 것을 뜻한다. 일반적으로 비구의 발달은 대퇴골두가 비구에 잘 위치해 있으면 자연히 발달하고 압력이 양측의 연골에 가해지는 기계적 힘으로 설명되어 왔다. 그러나 비구에 있는 두 상장연골중 어느 부분이 비구의 깊이에 비구에서 주 역할을 한다는 것을 밝혀져 있지 않다.(Salter, 1961; 1967; Alexander, 1965; Pemberton, 1965; Mackenzie, 1972)이러한 점을 고려하여 저자들은 아직 밝혀져 있지 않은 상방연골의 비구 성장에 대한 영향과 대퇴골두 발육에 대한 영향에 대한 연구가 필요하다고 생각된다.
손상이 비구 성장에 미치는 영향 등을 탐색 목적으로 이 실험에 착수하였다.

재료 및 방법

생후 8주된 500gm 비외의 성장기 가토 30마리를 압 수 구별없이 10마리씩 3군으로 나누어 제 I군은 수술 조작을 하지 않은 정상 고관절로서 대조군으로 사용하였으며, 제 2군은 비전지 성장판(greater trochanter and its growth plate)을 제거하였고 제 III군은 비구의 삼방선 연골을 과거하였다.

실험 방법

1. 수술방법

제 II 군 : 제중 kg당 30mg의 nembutal로 가토를 마취 시킨 후 측위에서 우 고관절 주위를 사로한 후 무균적으로 우 고관절을 중심으로 총속으로 3cm 외부질개를 하고 대퇴 대전자 및 대전자 성장판을 제거하고 외전근을 대전자 기저부에 부착시킨 다음 외부를 통합하였다.

제 III 군 : 제 II군과 마찬가지로 가토를 측위에서 후측방 도달법(postero-lateral approach)으로 우측 고관절을 노출시킨 후 외회전근 판절낭을 절개하여 고관절을 탈구시킨 다음 1mm의 섬세한 천공기를 사용하여 삼방선 연골을 완전히 과져 시켰다. 그 후 다시 고관절을 정착시킴으로 정복 후 판절낭과 외회전근을 원 위치에 부착시키고 외부를 통합하였다.

2. 관찰방법

수술 후 모든 가토를 자유 방치하였으며, 비구 성장판의 관찰은 수술 전 및 수술 후 6주까지 1주단계로 1주부터 양측 고관절의 X-선 활염으로 하였으며 단 방 성장판에 나타난 비구각(acetabular angle) C-E 각 (center-edge angle) 및 비구의 변화하는 경향과 그정 도를 비교 관찰하였다. 이에 활염시 가토의 제거는 양외측에서 양측 고관절을 완전히 관찰시킨 다음 침습 절합부(symphysis pubis)를 중심으로 하여 여기에 수직으로 활염 거리가 30인치로 고정되어 있는 Siremobil (Siemens Co.)로 X-선을 조사하여 양측 고관절을 활염하였다. 비구의 경이 및 혹은의 측정에는 0.05mm까지 측정이 가능한 특수진(그림 1)을 사용하였다.

3. 측정방법

정상 가토의 비구의 변화를 측정시부터 생후 20주까지 관찰하였으나 생후 17주 이후는 폐관 17도가 되어 변하지 않았으므로(표 1-a, 1-d) 두군 측정은 실험일인 생후 8주부터 실험후 6주안 생후 14주까지 실시하였다.

i) 비구각 (acetabular angle, A-A)
양측 삼방선 연골의 중심점을 잇는 선과 비구의 삼방선 연골의 중심에서 비구의 외상단으로 그은 선이 만드는 각으로 하였다(그림 2).

ii) C-E 각 (center-edge angle, C-E angle)

| Table 1-a. Acetabular angles (degree) in group I with normal hip |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Age (weeks) | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 20 |
| Rabbit No. | | | | | | | | | |
| 1 | 29 | 28 | 30 | 31 | 30 | 28 | 27 | 26 | 25 |
| 2 | 28 | 29 | 30 | 31 | 30 | 28 | 27 | 26 | 25 |
| 3 | 29 | 30 | 31 | 32 | 31 | 29 | 28 | 27 | 26 |
| 4 | 26 | 27 | 28 | 29 | 28 | 26 | 25 | 24 | 23 |
| 5 | 29 | 30 | 31 | 32 | 31 | 29 | 28 | 27 | 26 |
| 6 | 28 | 29 | 30 | 31 | 30 | 28 | 27 | 26 | 25 |
| 7 | 27 | 28 | 29 | 30 | 29 | 27 | 26 | 25 | 24 |
| 8 | 28 | 29 | 30 | 31 | 30 | 28 | 27 | 26 | 25 |
| 9 | 30 | 31 | 32 | 33 | 32 | 30 | 29 | 28 | 27 |
| 10 | 26 | 27 | 28 | 29 | 28 | 26 | 25 | 24 | 23 |

Mean+ S.D. | 28.0 | 25.4 | 22.6 | 21.3 | 19.4 | 17.9 | 17.1 | 16.9 |
| +1.33 | +1.84 | +2.12 | +2.54 | +3.03 | +2.69 | +2.55 | +2.18 |
Table 1-b. Acetabular angles (degrees) in group I with excision of greater trochanter and its growth plate

<table>
<thead>
<tr>
<th>Rabbit No.</th>
<th>Age (weeks) Op.</th>
<th>Pre-op.</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>29</td>
<td>27</td>
<td>24</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>28</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>30</td>
<td>28</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>27</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>23</td>
<td>22</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>26</td>
<td>25</td>
<td>23</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>30</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

Mean ± S.D.

- 28.0 ± 25.7 ± 24.2 ± 23.0 ± 21.2 ± 19.8 ± 19.0

+1.49 +1.42 +2.04 +1.41 +1.40 +1.62 +1.41

Op.: operation, Pre-op.: pre-operative

Fig. 1. Caliper (Mitutoyo, Japan), Accuracy: 0.05mm

Fig. 2. Diagram of measurement of acetabular angle (A.A.)

Fig. 3. Diagram of measurement of center-edge (C-E) angle
비구의 위치단에서 양측 상방선 연골의 중심을 잇는 선에 수직으로 끼인 선과 비구의 외상단과 내하골두의 중심점을 잇는 선이 만드는 경로로 하였다(그림 3).

성 적

가. 비구각(acetabular angle)

제Ⅰ군의 생후 8주의 정상 가토에서는 비구각이 평균 28.0±1.33도였던 것이 생후 14주까지 계속 감소하였으나 생후 20주에는 평균 16.9±2.18도로서 생후 1주에 비해 거의 변화가 없는 것으로 보아 정상 비구각은 생후 14주 이후에는 거의 이상 변화 없음을 알 수 있다. 또한 생후 8주부터 10주사이의 2주 동안 변화율이 가장 컸기 때문에 변화의 범위는 5.4도가 감소하였으며 생후 10주 이후에는 변화율이 매우 감소하였다(표 1-a, 1-d, 그림 5).

대전자 및 대전자 성장란을 제거한 제Ⅱ군에서 생후 8주에 평균 28.0±1.49도였던 것이 생후 14주에는 평균 19.0±1.41도 감소하였으나 정상 변화로 각도는 제Ⅰ군보다 1.9도 낮은 감소하였으나(P＜0.05). 메추 변화율은 제Ⅰ군과 유사하였다(표 1-b, 1-d, 그림 6) 반면 상방선관 성장란을 제거한 제Ⅱ군에서는 생후 8주에 평균 27.8±1.32도였던 것이 생후 14주에는 평균 35.8±1.41도로서 오히려 8.0±1.6도가 증가하여 제Ⅰ군과 비교시 18.9도 만큼 비구각의 증가율을 보였다(표 1-c, 1-d, 표 4, 그림 7).

나. C-E각(center-edge angle)

제Ⅰ군의 정상 가토의 C-E각은 생후 8주에 평균 28.0±3.37도, 생후 14주에는 평균 41.3±4.64도로서 6주간 1.33±0.30도가 증가함으로서 정상의 고관절의 풀무는 비구에 의해 잘 밀착되킴을 알 수 있다. C-E각은 생후 8주부터 14주까지 비슷한 증가율을 보였다(표 2-a, 2-d, 그림 5).

제Ⅰ군에서는 C-E각은 생후 8주에 평균 28.2±2.86도, 생후 14주에는 평균 38.3±1.95도로서 6주동안 0.1±1.6도가 증가하였으나 제Ⅰ군에서 보다는 3.7도 더 증가하였다(P＜0.05). (표 4), 메추 증가율은 생후 8주부터 14주까지 큰 차이가 없었다(표 2-b, 2-d, 그림 6).

제Ⅱ군에서는 C-E각은 생후 8주에 평균 27.8±2.15도, 생후 14주에는 평균 18.3±2.45도로서 오히려 9.5±1.7도 감소하였다. 제Ⅱ군에서 비구 각도에 서 하야 전체 평균값이 감소한 것은 5.5도의 감소폭이 있었으며(표 2-c, 2-d), 이론에서 이 기기에서 가장 많은 증가를 보였으며 C-E각의 변화는 비구각의 변화에 의한 이차적인 결과라고 생각된다(표 1-c, 1-d).

다. 비구의 길이 및 폭(acetabular depth and width)

A. 비구의 길이(acetabular depth)

제Ⅰ군의 비구의 길이는 생후 8주에 평균 4.37±0.25mm, 생후 14주에는 평균 5.83±0.36mm로서 1.46±0.37mm가 증가하였으며, 메추 증가율은 생후 8주에서 14주 사이의 6주 동안 비슷하였다(표 3-a, 3-d, 표 4, 그림 5). 제Ⅱ군에서는 비구의 길이는 생후 8주에 평균 4.47±0.15mm, 생후 14주에는 5.50±0.14mm로서 1.03±0.18mm가 증가하였으며 정상에 비해 0.43mm 더 증가하였다(표 3-b, 3-d, 표 4, 그림 6) 0.43mm의 적은 차이지만 통계학적으로 의미가 있었다(P＜0.01).

제Ⅱ군에서는 비구의 길이는 생후 8주에 평균 4.34±0.24mm, 생후 14주에는 평균 3.99±0.37mm로서 0.35±0.19mm 감소하여 결국 제Ⅰ군에 비하여 1.81mm 더 감소하였다(표 3-c, 3-d, 표 4, 그림 7).

B. 비구의 폭(acetabular width)

제Ⅰ군에서 비구의 폭은 생후 8주에 평균 8.51±0.29mm, 생후 14주 평균 9.83±0.53mm로서 6주동안에 1.32±0.41mm가 증가하였고 증가율은 메추마다 비슷하였다(표 3-a, 3-c, 표 4, 그림 5). 제Ⅱ군에서는 비구의 폭은 생후 8주에 평균 8.52±0.20mm, 생후 14주에는 평균 9.78±0.48mm로서 6주동안에 1.26±0.18mm가 증가하여 제Ⅰ군의 변화와 비하여 0.06mm 감소
Table 1-c. Acetabular angles (degrees) in group II with destruction of triradiate cartilage

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit No.</td>
<td></td>
<td>Pre-op.</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>29</td>
<td>31</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>32</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>28</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>29</td>
<td>30</td>
<td>33</td>
<td>34</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>33</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>34</td>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>

Mean + S.D. 27.8 29.5 30.5 31.8 33.5 34.5 35.8
+1.32 +1.27 +1.72 +1.62 +1.27 +1.08 +1.14

Op.: operation, Pre-op.: pre-operative

Table 1-d. Changes of mean acetabular angles (degrees) in each group

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>28.0+1.33</td>
<td>25.4+1.84</td>
<td>22.6+2.12</td>
<td>21.3+2.54</td>
<td>19.4+3.03</td>
<td>17.9+2.69</td>
<td>17.1+2.55</td>
</tr>
<tr>
<td>2</td>
<td>28.0+1.49</td>
<td>25.7+1.42</td>
<td>24.2+2.04</td>
<td>23.0+1.41</td>
<td>21.2+1.40</td>
<td>19.8+1.62</td>
<td>19.0+1.41</td>
</tr>
<tr>
<td>3</td>
<td>27.8+1.32</td>
<td>29.5+1.27</td>
<td>30.5+1.72</td>
<td>31.8+1.62</td>
<td>33.5+1.27</td>
<td>34.5+1.08</td>
<td>35.8+1.14</td>
</tr>
</tbody>
</table>

Table 2-a. Center-edge angles (degrees) in group I with normal hip

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>29</td>
<td>29</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>30</td>
<td>31</td>
<td>33</td>
<td>33</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>38</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>38</td>
<td>40</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>35</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>31</td>
<td>35</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>28</td>
<td>39</td>
<td>33</td>
<td>38</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>35</td>
<td>41</td>
<td>43</td>
<td>44</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>27</td>
<td>29</td>
<td>36</td>
<td>39</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>37</td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

Mean + S.D. 28.0 30.0 32.6 35.7 37.8 39.7 41.3
+3.37 +4.10 +4.58 +4.76 +4.49 +3.80 +4.64

-620-
Table 2-b. Center-edge angles (degrees) in group II with excision of greater trochanter and its growth plate

<table>
<thead>
<tr>
<th>Age (weeks) Op.</th>
<th>Rabbit No.</th>
<th>Pre-op.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>27</td>
<td>29</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>38</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26</td>
<td>26</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>27</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>33</td>
<td>35</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>27</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>29</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>Mean+ S.D.</td>
<td></td>
<td>28.2</td>
<td>29.2</td>
<td>30.8</td>
<td>33.2</td>
<td>35.0</td>
<td>36.0</td>
<td>38.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+2.86</td>
<td>+2.94</td>
<td>+2.86</td>
<td>+3.16</td>
<td>+2.75</td>
<td>+2.45</td>
<td>+1.95</td>
</tr>
</tbody>
</table>

Op.: operation, Pre-op.: pre-operative

Table 2-c. Center-edge angles (degrees) in group I with destruction of triradiate cartilage

<table>
<thead>
<tr>
<th>Age (weeks) Op.</th>
<th>Rabbit No.</th>
<th>Pre-op.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>25</td>
<td>19</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>28</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>31</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>27</td>
<td>25</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>28</td>
<td>27</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>30</td>
<td>28</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>29</td>
<td>26</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>26</td>
<td>24</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>27</td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Mean x S.D.</td>
<td></td>
<td>27.8</td>
<td>25.3</td>
<td>22.3</td>
<td>21.7</td>
<td>21.3</td>
<td>20.0</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+2.15</td>
<td>+3.40</td>
<td>+2.98</td>
<td>+2.98</td>
<td>+2.95</td>
<td>+2.54</td>
<td>+2.45</td>
</tr>
</tbody>
</table>

Op.: operation, Pre-op.: pre-operative

Table 2-d. Changes of mean center-edge angles (degrees) in each group

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Group</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>28.0</td>
<td>30.3</td>
<td>32.6</td>
<td>35.7</td>
<td>37.8</td>
<td>39.7</td>
<td>41.3</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>28.2</td>
<td>29.2</td>
<td>30.8</td>
<td>33.2</td>
<td>35.0</td>
<td>36.0</td>
<td>38.3</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>27.8</td>
<td>25.3</td>
<td>22.3</td>
<td>21.7</td>
<td>21.3</td>
<td>20.0</td>
<td>18.3</td>
</tr>
</tbody>
</table>

621
Table 3-a. Acetabular depth and width (mm) in group I with normal hip

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.0</td>
<td>4.6</td>
<td>4.6</td>
<td>5.4</td>
<td>5.6</td>
<td>6.1</td>
<td>6.3</td>
</tr>
<tr>
<td>depth</td>
<td>8.6</td>
<td>8.7</td>
<td>9.1</td>
<td>9.9</td>
<td>10.4</td>
<td>10.8</td>
<td>10.9</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>5.2</td>
<td>5.4</td>
<td>5.8</td>
<td>6.0</td>
<td>6.2</td>
<td>6.5</td>
</tr>
<tr>
<td>depth</td>
<td>8.9</td>
<td>9.2</td>
<td>9.3</td>
<td>9.6</td>
<td>9.8</td>
<td>10.0</td>
<td>10.2</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>4.0</td>
<td>4.2</td>
<td>4.2</td>
<td>4.5</td>
<td>5.0</td>
<td>5.3</td>
</tr>
<tr>
<td>depth</td>
<td>8.0</td>
<td>8.0</td>
<td>8.7</td>
<td>8.8</td>
<td>8.9</td>
<td>9.2</td>
<td>9.5</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
<td>4.7</td>
<td>4.9</td>
<td>5.2</td>
<td>5.4</td>
<td>5.7</td>
<td>5.8</td>
</tr>
<tr>
<td>depth</td>
<td>8.5</td>
<td>8.8</td>
<td>9.0</td>
<td>9.2</td>
<td>9.4</td>
<td>9.6</td>
<td>9.8</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.2</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>5.5</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>depth</td>
<td>8.4</td>
<td>8.6</td>
<td>8.8</td>
<td>9.0</td>
<td>9.2</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.4</td>
<td>4.6</td>
<td>4.9</td>
<td>4.9</td>
<td>5.2</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>depth</td>
<td>8.4</td>
<td>8.6</td>
<td>8.7</td>
<td>8.9</td>
<td>8.9</td>
<td>9.2</td>
<td>9.4</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.4</td>
<td>4.7</td>
<td>5.0</td>
<td>5.3</td>
<td>5.5</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>depth</td>
<td>8.7</td>
<td>9.1</td>
<td>9.3</td>
<td>9.3</td>
<td>9.5</td>
<td>9.7</td>
<td>9.9</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.6</td>
<td>4.8</td>
<td>5.1</td>
<td>5.4</td>
<td>5.6</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>depth</td>
<td>8.8</td>
<td>9.2</td>
<td>9.2</td>
<td>9.5</td>
<td>9.7</td>
<td>9.8</td>
<td>10.0</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.4</td>
<td>4.7</td>
<td>4.8</td>
<td>5.3</td>
<td>5.4</td>
<td>5.7</td>
<td>5.9</td>
</tr>
<tr>
<td>depth</td>
<td>8.7</td>
<td>9.0</td>
<td>9.2</td>
<td>9.3</td>
<td>9.5</td>
<td>9.8</td>
<td>10.2</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.5</td>
<td>4.7</td>
<td>5.0</td>
<td>5.2</td>
<td>5.2</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>depth</td>
<td>8.1</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.8</td>
<td>9.0</td>
<td>9.2</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean + S.D.:
- Depth: 4.37 ± 0.25, 4.68 ± 0.29, 4.89 ± 0.32, 5.19 ± 0.41, 5.39 ± 0.39, 5.68 ± 0.34, 5.83 ± 0.36
- Width: 8.51 ± 0.29, 8.77 ± 0.37, 8.98 ± 0.29, 9.20 ± 0.41, 9.41 ± 0.49, 9.63 ± 0.53, 9.83 ± 0.53

Table 3-b. Acetabular depth and width (mm) in group I with excision of greater trochanter and its growth plate

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.3</td>
<td>4.6</td>
<td>5.0</td>
<td>5.1</td>
<td>5.2</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>depth</td>
<td>8.4</td>
<td>8.5</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.6</td>
<td>4.7</td>
<td>5.0</td>
<td>5.2</td>
<td>5.4</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>depth</td>
<td>8.4</td>
<td>8.5</td>
<td>8.7</td>
<td>8.7</td>
<td>9.0</td>
<td>9.2</td>
<td>9.6</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.4</td>
<td>4.6</td>
<td>4.6</td>
<td>4.7</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>depth</td>
<td>8.7</td>
<td>9.2</td>
<td>9.2</td>
<td>9.3</td>
<td>10.0</td>
<td>10.1</td>
<td>10.5</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>4.7</td>
<td>5.0</td>
<td>5.1</td>
<td>5.3</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>depth</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.1</td>
<td>9.3</td>
<td>9.5</td>
<td>9.8</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.4</td>
<td>4.7</td>
<td>4.9</td>
<td>5.2</td>
<td>5.4</td>
<td>5.5</td>
<td>5.7</td>
</tr>
<tr>
<td>depth</td>
<td>8.7</td>
<td>9.1</td>
<td>9.2</td>
<td>9.5</td>
<td>9.8</td>
<td>10.0</td>
<td>10.4</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
<td>4.9</td>
<td>4.9</td>
<td>5.1</td>
<td>5.1</td>
<td>5.3</td>
<td>5.5</td>
</tr>
<tr>
<td>depth</td>
<td>8.1</td>
<td>8.3</td>
<td>8.6</td>
<td>8.6</td>
<td>8.7</td>
<td>9.0</td>
<td>9.4</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.6</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>5.3</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>depth</td>
<td>8.5</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.3</td>
<td>9.3</td>
<td>9.5</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.7</td>
<td>4.9</td>
<td>4.9</td>
<td>5.2</td>
<td>5.2</td>
<td>5.4</td>
<td>5.5</td>
</tr>
<tr>
<td>depth</td>
<td>8.4</td>
<td>8.8</td>
<td>8.8</td>
<td>9.0</td>
<td>9.2</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.3</td>
<td>4.5</td>
<td>4.8</td>
<td>5.0</td>
<td>5.1</td>
<td>5.2</td>
<td>5.4</td>
</tr>
<tr>
<td>depth</td>
<td>8.6</td>
<td>8.8</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.4</td>
<td>9.6</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.3</td>
<td>4.7</td>
<td>4.9</td>
<td>5.2</td>
<td>5.2</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>depth</td>
<td>8.6</td>
<td>8.6</td>
<td>9.0</td>
<td>9.2</td>
<td>9.5</td>
<td>9.9</td>
<td>10.4</td>
</tr>
<tr>
<td>width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean + S.C.:
- Depth: 4.47 ± 0.15, 4.70 ± 0.13, 4.90 ± 0.12, 5.10 ± 0.17, 5.20 ± 0.18, 5.38 ± 0.18, 5.50 ± 0.14
- Width: 8.52 ± 0.20, 8.75 ± 0.28, 8.92 ± 0.21, 9.02 ± 0.29, 9.25 ± 0.43, 9.50 ± 0.37, 9.78 ± 0.48

Op. : operation, Pre-op. : pre-operative
Fig. 5. Development of acetabulum in group I with normal hip

Normal hip (At the age of 8 weeks)

age, 9 weeks

age, 10 weeks

age, 12 weeks

age, 13 weeks

age, 11 weeks

age, 14 weeks
Table 3-c. Acetabular depth and width (mm) in group I with destruction of triradiate cartilage

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Op.</th>
<th>Rabbit No.</th>
<th>Pre-op.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>depth</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.6</td>
<td>8.7</td>
<td>9.1</td>
<td>11.2</td>
<td>11.6</td>
<td>11.8</td>
<td>11.9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>depth</td>
<td>4.8</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>7.9</td>
<td>8.0</td>
<td>8.7</td>
<td>9.6</td>
<td>11.4</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>depth</td>
<td>4.0</td>
<td>3.8</td>
<td>3.8</td>
<td>3.5</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>7.8</td>
<td>7.8</td>
<td>8.2</td>
<td>8.5</td>
<td>8.5</td>
<td>9.2</td>
<td>9.5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>depth</td>
<td>4.2</td>
<td>4.2</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.6</td>
<td>8.7</td>
<td>9.0</td>
<td>9.2</td>
<td>9.4</td>
<td>9.8</td>
<td>10.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>depth</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
<td>4.4</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.9</td>
<td>9.2</td>
<td>9.5</td>
<td>9.8</td>
<td>10.1</td>
<td>10.3</td>
<td>10.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>depth</td>
<td>4.3</td>
<td>4.2</td>
<td>4.2</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.5</td>
<td>8.8</td>
<td>9.4</td>
<td>9.5</td>
<td>9.8</td>
<td>10.2</td>
<td>10.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>depth</td>
<td>4.5</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.8</td>
<td>9.0</td>
<td>9.5</td>
<td>9.6</td>
<td>9.8</td>
<td>10.0</td>
<td>10.3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>depth</td>
<td>4.1</td>
<td>3.8</td>
<td>3.8</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.4</td>
<td>8.6</td>
<td>9.0</td>
<td>9.2</td>
<td>9.5</td>
<td>9.8</td>
<td>10.0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>depth</td>
<td>4.2</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.6</td>
<td>8.7</td>
<td>9.3</td>
<td>9.5</td>
<td>9.9</td>
<td>10.2</td>
<td>10.5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>depth</td>
<td>4.3</td>
<td>4.2</td>
<td>4.2</td>
<td>4.2</td>
<td>4.0</td>
<td>4.0</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>width</td>
<td>8.8</td>
<td>9.2</td>
<td>9.8</td>
<td>10.2</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Mean ± S.D. depth: 4.34 ± 0.24, 4.21 ± 0.28, 4.19 ± 0.29, 4.10 ± 0.35, 4.01 ± 0.36, 4.01 ± 0.36, 3.99 ± 0.37
Mean ± S.D. width: 8.49 ± 0.37, 8.69 ± 0.46, 9.15 ± 0.46, 9.63 ± 0.11, 10.05 ± 0.92, 10.33 ± 0.78, 10.54 ± 0.69

Op.: operation, Pre-op.: pre-operative

Table 3-d. Weekly changes of mean acetabular depth in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4.37 ± 0.25</td>
<td>4.68± 0.29</td>
<td>4.89 ± 0.32</td>
<td>5.19 ± 0.41</td>
<td>5.39 ± 0.39</td>
<td>5.68 ± 0.34</td>
<td>5.84 ± 0.36</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4.47 ± 0.15</td>
<td>4.70 ± 0.13</td>
<td>4.90 ± 0.12</td>
<td>5.10 ± 0.17</td>
<td>5.20 ± 0.18</td>
<td>5.38 ± 0.18</td>
<td>5.50 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4.34 ± 0.24</td>
<td>4.21 ± 0.28</td>
<td>4.19 ± 0.29</td>
<td>4.10 ± 0.35</td>
<td>4.01 ± 0.36</td>
<td>4.01 ± 0.36</td>
<td>3.99 ± 0.37</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-e. Weekly changes of mean acetabular width in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (weeks)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>8.51 ± 0.29</td>
<td>8.77 ± 0.37</td>
<td>8.98 ± 0.29</td>
<td>9.20 ± 0.41</td>
<td>9.41 ± 0.49</td>
<td>9.63 ± 0.53</td>
<td>9.83 ± 0.53</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>8.52 ± 0.20</td>
<td>8.75 ± 0.28</td>
<td>8.92 ± 0.21</td>
<td>9.02 ± 0.29</td>
<td>9.25 ± 0.43</td>
<td>9.50 ± 0.37</td>
<td>9.78 ± 0.48</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>8.49 ± 0.37</td>
<td>8.67 ± 0.46</td>
<td>9.15 ± 0.46</td>
<td>9.63 ± 0.11</td>
<td>10.05 ± 0.92</td>
<td>10.33 ± 0.78</td>
<td>10.54 ± 0.69</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Changes of the indices of acetabulum in each group for 6 weeks

<table>
<thead>
<tr>
<th>Indices</th>
<th>Acetabular angle (degrees)</th>
<th>Center-edge angle (degrees)</th>
<th>Acetabulum Depth (mm)</th>
<th>Acetabulum Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>-10.9 ± 1.8</td>
<td>13.3 ± 3.0</td>
<td>1.46 ± 0.37</td>
<td>1.32 ± 0.41</td>
</tr>
<tr>
<td>Group II</td>
<td>-9.0 ± 0.9</td>
<td>10.1 ± 1.6</td>
<td>1.03 ± 0.18</td>
<td>1.26 ± 0.18</td>
</tr>
<tr>
<td>Group III</td>
<td>8.0 ± 1.6</td>
<td>-9.5 ± 1.7</td>
<td>-0.35 ± 0.19</td>
<td>2.05 ± 0.76</td>
</tr>
</tbody>
</table>
Fig. 6. Development of acetabulum in group II with excision of greater trochanter and its growth plate

Pre-operative (At the age of 8 weeks)

1st week (age, 9 weeks)

4th week (age, 12 weeks)

2nd week (age, 10 weeks)

5th week (age, 13 weeks)

3rd week (age, 11 weeks)

6th week (age, 14 weeks)
Fig. 7. Development of acetabulum in group with destruction of triradiate cartilage

Pre-operative (At the age of 9 weeks)

1st week (age, 9 weeks)

4th week (age, 12 weeks)

2nd week (age, 10 weeks)

5th week (age, 13 weeks)

6th week (age, 14 weeks)
고찰

고관절의 성장은 일반적으로 비구 및 대퇴 근위부의 각각 성장판의 성장에 의해 좌우되며, 또한 관절의 안정성은 양자로 서로 정상적인 관절편을 유지하여 이들 성장판에 가해지는 기체적 혈의 균일을 만드게 이루어진다.

비구는 두 종류의 성장판이 있으며, 그중 하나는 오목한 관절편의 표면에 위치한 배세포층(germinal cell layer)로서의 관절편에 미치는 영향도 덜계하지 않기 때문에, 성장판이 성장판이 미치는 영향도도 비교 연구된 바 없다.

일반적으로 고관절의 불안전성을 계산하는 방법으로는 여러가지가 있으나 대개의 경우 단순 X-선 소견을 중심으로 그 정도를 표시하게 된다. 즉 가장 단순한 표시법이 비구이며, 이에 비해 비구의 길이 및 폭과 C-E각 등이 이용된다. 그리고 최근 Salter과 Dubois(1974)는 비구의 비정상 방향위(maldirection)가 비구 발육 부진의 가장 중요한 원인이 된다고 하여 이 방향위만 정상으로 교정함으로써 전안각이 자연 교정되다고 하였다. 비구의 정상적인 성장여부의 판단도 역시 이러한 표시법들을 이용할 수 있으며, 저자들은 비구, C-E각과 비구의 길이 및 폭을 측정하여 비교 기준으로 삼았다. 비구, C-E각의 길이 및 폭은 비구가 성장함에 따라 그 크기가 변하는데, 정상 고관절에서는 성장기에 따라 비구의 길이가 감소하거나 C-E각과 비구의 길이 및 폭은 증가하게 된다. 그러나 비구의 이상 발육으로 비구가 증가하면 비구의 폭은 증가하거나 C-E각과 비구의 길이는 감소하게 되며 이런 고관절은 분만성으로 생기게 된다.

제Ⅰ군에서의 같이 성장각도의 비구각은 생후 14주가까지 점차 늘어나다가 그 후는 밀라운 변화를 보이지 않았으므로(표 1-a, 1-d), 생후 14주까지는 즉 실리화 후 6주간을 모두 지표의 판찰기간으로 삼았다. 정상 가로는 생후 8주부터 6주동안 비구각이 10.9±1.8도 감소하였고 C-E각은 13.3±3.0도, 길이는 1.46±0.37mm, 그리고 폭은 1.32±0.41mm 증가하였으며(표 4), 비구각의 변화는 생후 10주 이내에 빠르게 감소하고 생후 14주후에는 거의 변하지 않으므로(표 1-a, 1-d), 가상한 한 여舆情시에 고관절의 구조적 변형을 치료하여 비구의 정상적 발달을 기대할 수 있다고 생각되었다.

대전자 성장판을 손상시킨 제Ⅰ군에서는 정상군에 비해 비구각이 1.9도 크게 감소하였고 C-E각은 3.2도 크게 증가하였으며 비구의 길이는 0.43mm 일정하게 향하여 보아 비구의 경부 발육부전이 생긴 것을 보았는데(표 4). 이것은 대전자 성장판의 손상후 대퇴경부의 폭이 증가하지 못하여 발생한 비정상에는 의의해 비구간(acetabular roof)에 해당하는 관절편의 좌측(lateral side)에만 부하 압력이 집중되어 비구각이 일정한 비구의 길이가 적절한 것으로 생각되며 이에는 삼방성 염증성관절은 정상적으로 성장한 것으로 생각되었다. 즉 대퇴경부의 변형으로 비구의 위치가 변할 수 있으며 장상기 성장부는 그 자체가 불안정성을 나타낸다면 이자적 비구의 변화로 인하여 더욱 불안정한 고관절을 형성함을 알 수 있었다.

사용의 경우 성장야 에서는 정부가 145~150도이 나 매재 3세명에는 125~130도로 감소하여 그 후에는 변하지 않는 것으로 알려져 있다. 선천성 고관절 탐구에서 조기 간 적절히 치료하지 않거나 소아마비로 3세까지 보호하라 하지 않은 경우 변형이 교정되지 않고 저중단에 의해 피부의 발달을 저해하여 후에 정복하더라도 재발부위가 될 수 있다는 임상보고와 일치하다(Ingram, 1968)4).

비구의 변형은 삼방성성장연골을 손상시킨 제Ⅰ군에서는 가정 성장에 생후 24주후에는 정상에 비해 비구각은 18.9도 증가하고, C-E각은 22.8도 감소. 길이는 1.81mm 감소하였고, 폭은 0.73mm 증가하였다(표 4, 5). 이것은 비구의 변형은 비구 성장연골의 불균일한 성장에 의한다고 알려져 왔으나 이 실험에서와 같이 비구에 의한 비구의 변형을 보인 제Ⅰ군보다 삼방성 성장연골을 손상시킨 제Ⅰ군에서 비구의 변형이 더 심한으로 고관절의 성장연골에는 삼방성 성장연골이 비구의 성장과 안정성에 더 중요한 역할을 할 수 있음을 고려하였으나, 이 외에 삼방성 성장연골의 비구내장 즉 비구각의 감소. 길이 및 폭 그리고 C-E각의 증가 등을 일으켜 비구의 안정성에 크게 관여하고 있다고 생각된다.

