진행한 백서의 좌골신경에 정맥이식 후 생리적 업무와 신경성장인자 주입에 따른 신경재생에 대한 연구

이광식 ㆍ심재학 ㆍ김태하 ㆍ주성태
고려대학교 의과대학 정형외과학교실

목적: 신경결손에 시행한 자가정맥 이식에서 생리적 업무와 신경성장인자의 주입 후의 효과에 따른 신경재생의 정도를 비교하고, 정맥이식술의 방법에 따라서 어떠한 결손을 보이는지 알아보고자 하였다.

대상 및 방법: 신경결손 부위에 자가정맥이식을 시행하고 그 방법으로 결손 부위에 정맥을 완전부위 근위부를 바꾸어 이식한 굵은(inside-in vein graft)과 정맥의 내막을 박으로 취하여 이식한 굵은(outside-out vein graft)으로 나누고 각각의 굵은부터 신경결손부의 업무를 투입한 그룹과 생리적 업무를 투입한 그룹으로 나누고 좌골신경을 정맥 절단 후 재합착한 동소이식을 시행한 굵은 대조군으로 하여 2주, 4주, 8주 및 12주에 근전도 검사와 평행 및 투과전자 현미경상 그 결과를 비교하였다.

결과: inside-out vein graft 방법은 inside-in vein graft 방법보다 그리고 이식 정맥내 신경성장인자를 투입한 경우가 생리적 업무를 투입한 경우보다 평행 및 투과전자 현미경 소견상 초기에 많은 신경의 재생 및 유수신경화가 축진하였으며, 근전도 검사상에서도 복합 운동신경화의 평균 최대전격이 큰 것을 보 수 있었다.

결론: 신경결손의 경우 inside-out vein graft 방법에 신경성장인자를 투여하는 수술 치료법을 일시에 적용하면 좀 더 초기에 신경재생을 유도할 수 있고, 이로 인해 신경화된 평퍼 근육에 재신경화도 일찍 일어나 근육의 위치는 회복될 수 있을 것으로 사료된다.

사인 단어: 신경결손, 투과기 정맥이식술(inside-out vein graft), 신경성장인자

서론
신경결손이 있는 경우 자가 신경이식술은 좋은 방법으로 인식 되어 왔으나 신경을 절단한 곳에 부의 감각신경이 동반되는 단점이 있다. 그러므로 정맥의 감각신경이나 기능소실 없이 신경결손을 치료하기 위해서는 자가신경을 대치할 수 있는 반복적인 대처법의 선택이 필수적이며, 특히 신경결손에 대한 자가경막이식의 관심이 높아지고 있다. 1982년 Chiu 등은 흉내 좌골신경에 1 cm의 결손 부위를 만들고 자가정맥이식을 실시하여 이식 정맥의 신경재생을 위한 방법으로 사용함을 보고하였으며, 정맥의 의약이 안쪽으로 뒤집혀서 하는 inside-out vein graft 방법이 신경이식에 사용하는 새로운 방법으로 연구되고 있다.27,28,29) 또한 결단된 신경의 재생을 촉진하기 위한 방법으로 신경성장인자(nerve growth factor)를 투여하는 방법이 있으며 여러 실험적 모델을 통하여 그 효능이 입증된 바 있으나, 이러한 실험들은 채상절단후(axonotomy) 신경성장인자를 투여함으로써 신경의 재생이 촉진되었다고 발표하였고 신경결손부위에 정맥이식 후 신경성장인자 투여 후 결과에 대한 연구는 아직 보고된 바 없다. 본 연구의 목적은 신경결손에 시행한 자가정맥 이식에서 생리적 업무와 신경성장인자의 주입 후의 효과에 따른 신경재생의 정도를 비교하고, 정맥이식술의 방법에 따라서 어떠한 결과를 보이는지 알아보고자 하였다. 이를 관찰하기 위해 신경결손 부위에 자가정맥이식을 실시하고 그 방법으로 정맥을 완전부위 근위부를 바꾸어 이식한 굵은(outside-out vein graft)과 정맥의 내막을 박으로 취하여 이식한 굵은(inside-out vein graft)으로 나누고, 각각의 굵은부터 신경성장인자를 투입한 그룹과 생리적 업무를 투입한 그룹으로 나누어 2주, 4주, 8주 및 12주에 근전도 검사를 시행하여 복합운동신경화(compound motor action potential)의 최대전격을 측정하고 각각 평행과 투과전자 현미경상 수초화의 정도와 수초의 두께를 관찰하여 그 결과를 비교하였다.

연구 대상 및 방법

1. 연구 대상

체중이 350 gm에서 400 gm인 백서(Sprague-Dawley rat)

 reflux

 17
를 실험 대상으로 하였으며, 신경성장인자 용액은 미국 Sigma 사의 제품인 NGF-7S® (Sigma Product, No. N-0513, USA) 를 사용하였으며, 이의 최적에는 Nacl (150 mg), MgSO₄ (12 mM), CaCl₂ (1.8 mM), K-HPO₄ (2.0 mM)과 귀 일부 민인 albumin rat fraction V powder® (Sigma Product, No. A6272, USA) 4 mg/mL을 사용하여 NGF-7S의 최중농도가 0.0022 mg/mL, pH는 7.4가 되도록 하였다. 근전도 검사기로는 미국 Cadwell사의 Excel®을 사용하였으며 투과전자 현미경 은 일본 Hitachi사의 H-600 모델을 이용하였다.

2. 실험방법

1) 실험군
총 80마리의 백서를 5개 군으로 나누었다. 제 1 군은 경정맥 이식을 시행하지 않고 채골신경을 상하 절단 후 재 종합하는 동 소이식(orthotopic graft)을 시행한 군을 대조군으로 하였으며, 제 2 군은 백서의 좌측 채골신경 결손부위에 좌측 경정맥을 절제 후 원위부와 귀위부를 바꾸어 이식하는 inside-in vein graft 를 시행하고 이식 정맥내 신경처럼을 투여한 군, 제 3 군은 경정맥의 안쪽 좌 경정맥의 내막이 바탕으로 되게 경정맥을 뒤집어 이식하는 inside-out vein graft를 시행하고 생리시험수를 투여한 군, 제 4 군은 inside-in vein graft를 시행하고 신경성장인자 투여한 군, 제 5 군은 inside-out vein graft를 시행하고 신경성장인자를 투여한 군으로 분류하였고, 각 군 당 16마리씩 실험을 행하였다.

2) 수술방법
실험 백서에 ketamin HCl (케이타민®, 한국유나이트)를 12 mg/kg의 용량으로 복강 주사하여 전신 마취 후 수술대 위에 놓고 식사 및 두부를 고정하고 좌측경부와 좌측대퇴부의 턱을 면도기로 섬모한 후 베터린 및 알콜 용액을 도포하여 무근 처리하였다. 먼저 좌측 경정맥을 뒤집기위하여 백서 전 경부 중앙에서 약 10 mm 정도 좌측식에서 길이 30 mm가량의 주력 관을 가졌으며, 수술현미경(Zeiss, SS)에서 하부 조직을 밝히고 약 15 mm가량의 경정맥을 절제하였다. 연결된 펌은 분지의 전기 조작기에 의해 소각하였으며 귀위부 및 원위부는 2-0 black silk로 결합한 후 미세 수술용 가위로 힐 절단하였다. 경 맥내의 혈액 음유를 제거하기 위하여 혈관 내강을 heparinized saline (10 IU/mL)으로 세척하였으며 과도한 정맥의 경측을 방지하기 위하여 2% lidocaine으로 도포하였다. 이렇게 준비된 경정맥은 12-14 mm 정도 약간의 경측을 보였으며 생리시험 수에 적절 거즈에 졌어 이식 부위가 준비될 때까지 보관하였다. 백서의 좌측 채골신경 좌측 대퇴부 내막에 약 5-0 cm가량의 피부를 종착하게 한 후 대퇴 내강신 사기를 바꾸어 채골신경을 노출 시켰다. 채골신경 채골신경과 복합신경으로 갈라지는 부위에서 약 5 mm 귀위부 자점을 미세 수술용 가위로 절단하고 이로

Fig. 1. Jugular vein was grafted on 10 mm defect of the sciatic nerve and then nerve growth factor was infiltrated into the lumen of the grafted vein.

부터 10 mm 귀위부 절점을 절단하여 채골신경에 10 mm의 신 경 결손부위를 만들었으며 나머지 실험방법은 다음과 같다.
Inside-in vein graft를 시행한 군에서는 정맥내의 볼브가 신경생성에 지장을 주지 않도록 절단한 경정맥의 귀위부와 원위부 의 방향으로 바꾸어 이식하였다. 경결손부에 정맥 이식부 앞쪽의 채골 신경 결손단을 2-3 mm의 경정맥의 앞부위에 삽입시켜 이식된 경정맥내로 재생된 채골신경이 자라는데 지장이 없도록 하였다. 정맥이식술은 수술 현미경에서 10-0 monofilament polyamide nylon로 시행하여 채골신경 외막과 경정맥을 끼합하였다.
Inside-out vein graft를 시행한 군은 미세 수술용 절개 노즈 (No. 5 Jeweler’s forceps)를 사용하여 이식 절단한 경정맥의 원위단을 안으로 귀위부를 통하여 절개용 원위부 끝을 경계로 잡은 귀 위부를 끌어내려 정맥의 안측내막이 바탕으로 휘집해 하였다. 이렇게 준비된 경정맥을 위와 같은 방법으로 채골신경의 절손 부분에 이식하였으며, 이 때 정맥내의 볼브가 바깥으로 나오기 때문에 경정맥의 방향은 고려하지 않았다. 실험군에 따라 생 리시험수나 신경성장인자 혈액 0.2 cc를 1 cc 주사기로 채골 신경과 경정맥의 끼합된 부위 사이로 1회 투여하여 경정맥의 개존을 확인하였다. 대조군의 경우에는 절단한 10 mm의 채골신경을 다시 경결손부위에 미세수술 현미경에서 신경외막 끼합술을 시행하였다. 절단된 근육과 근막은 4-0 polyglycolic acid로 끼합하고, 결합한 피부는 4-0 black silk로 끼합하였다. 수술 후 감염을 방지하기 위하여 알코 및 베타인으로 소독하였으며 수술 후 3일까지 gentamicin (2 mg/kg)를 근육내 주사하였다.

3) 육안적 소견 및 근전도 검사(electromyography; EMG)
신경재생능력을 알아보기 위해 수술 후 2주, 4주, 8주 및 12주에 육안적 관찰과 근전도 검사를 시행하였다. 이를 위하여 각 백서를 수술 방법과 동일한 방법으로 마취하고 절단한 채골신경의 기시부인 골격 절손(sciatic notch)에 이식된 경정맥 부위를 자르고 채골신경이 비복근(gastrocnemius muscle)으로 부착 되어
는 지정까지 노출하였으며, 경상액을 중심으로 좌골신경위 근위부 및 원위부를 윤활적으로 관찰하였다. 근육조직 검사는 좌골 절손의 바로 아래 부분에서 두 개의 칠면를 사용하여 이식점막의 근위부에서 좌골신경을 자극하였다. 이때 활동기록전극(action electrode)은 경골절손의 10 mm 하방 지점의 비복근에 삽입하였다. 또한 참조전극(reference electrode)은 족관절의 후방에 칠면극으로 삽입하였고 족관절극(ground electrode)은 족부위에 삽입하였다. 근육조직 검사의 결과 판정은 좌골신경을 최대로 자극하였을 때 기록되는 복합활성운동전극(compound motor action potential)의 최대 전류(peak amplitude)를 비교하였으며, 이러한 절개조직 검사는 6.5조 간격으로 3회씩 시행하였다.

4) 조직검사
(1) 광학현미경 검사
근육조직 검사를 끝난 후 신경재생과정과 양상을 보기 위해 광학 및 두경부현미경검사를 시행하였다. 조직편의 절하지 이식된 경상액의 중간부분에서 이식 경상액의 원위 및 중간부위까지 5 mm를 절취하였으며, 대조군에서는 동소이식부위 중간부터 원위의 5 mm를 절취하였다. 또한 광학현미경검사 및 두경부현미경검사는 이식 경상액의 중간부위 조직에서 시행하였다. 절취한 조직편은 0.1M cacodylate buffer (pH 7.3)에 녹인 2.5% glutaraldehyde와 2% paraformaldehyde의 혼합액으로 2시간 동안 고정하고 동일 완충액에 녹인 1% osmium tetroxide 용액(pH 7.3)으로 1시간 동안 더 고정하였다. 고정된 조직편은 완충액으로 수세한 다음 50%, 70%, 90%, 95% ethanol에서 각각 10분씩 1회, 100% ethanol에서 15분씩 3회 탈수하였고, Poly bed 812© (Polysciences, Inc., USA)에 염색되었다. 염색된 조직편은 1 μm 두께의 투과전자현미경(thinning section)을 제작하고 이를 toluidine blue로 염색하여 이식 경상액의 중간부를 광학현미경으로 관찰하고, 400배 확대한 한 시야(1 field)에서 보이는 재생된 신경섬유중 유수신경이 차지하는 비율을 계산하였다.
(2) 두경부현미경검사(Transmission electron microscopy)
투과전자현미경으로 제작한 표본은 다시 60 nm 두께의 초박침편(thin section)을 제작하여 uranyl acetate와 lead citrate로 이중 염색을 시행한 후 Hitachi H-600형 두경부현미경으로 75

<table>
<thead>
<tr>
<th>Table 1. Result of EMG study(peak amplitude of compound motor action potential, mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 weeks</td>
</tr>
<tr>
<td>Group I</td>
</tr>
<tr>
<td>Group II</td>
</tr>
<tr>
<td>Group III</td>
</tr>
<tr>
<td>Group IV</td>
</tr>
<tr>
<td>Group V</td>
</tr>
</tbody>
</table>

kV의 가속전압 하에서 미세기구를 관찰하였으며, 2,500배 확대된 사진을 적어 재생된 유수신경 수초의 두께를 1/10 mm까지 눈금이 있는 자를 이용하여 측정하였다.

결 과

1. 국소적 소견

경직마이식 후 2주, 4주에는 이식한 점막 모두에서 이식점막의 중앙부로 갈수록 다소 직경이 감소하는 모래시계 양상을 보였으나, 신경성장인자를 투입한 군에서는 모래시계의 양상이 생리적 식별수를 투입한 군보다 경미한 것을 볼 수 있었다. 근위부 및 원위부의 좌골신경 문합부위에 신경중 형성이나 혈종의 소견은 발견하지 못하였다. 술 후 8주 및 12주에 모두 이식점막 중앙부 직경이 4주에 비해 증가하는 양상을 보였으며, 역시 신경성장인자를 투입한 군에서 직경이 더욱 증가한 모습을 보 수 있었다. 각 주에 따른 모든 군에서 신경 결손부위 하방 비복근의 실험 위축소견을 볼 수 없었으나 신경성장인자 투여군의 경우는 주의 다른 근에 비해 위축 정도가 경미한 것을 볼 수 있었다.

2. 근육조직 검사 소견

Inside-out vein graft을 시행한 군에서 inside-in vein graft을 시행한 군보다 높은 진폭을 보였으나 통계적 의미는 없었으며, 신경성장인자를 투여한 군에서 생리적 식별수의 투여군보다 높은 진폭을 나타내었으며 2주를 제외한 모든 주에서 통계적 의미를 보였다(P<0.05)(Table 1, Fig. 2).

Fig. 2. The peak amplitudes of nerve growth factor infiltration group were higher than those of normal saline infiltration group; the peak amplitudes of inside-out vein graft group were higher than those of inside-in vein graft group. The peak amplitudes were highest in inside-out vein graft with nerve growth factor infiltration group except control group.
3. 조직검사 소견

1) 광학현미경 소견

광학현미경검사 결과 재생된 신경섬유 중 수초화 정도는 사일이 경과함에 따라 증가하는 소견을 보였으며, 대부분의 경우 inside-out vein graft를 시행한 군이 inside-in vein graft를 시행한 군 보다, 그리고 또한 신경성장인자를 투여한 군이 생리식염수를 투여한 군보다 수초화가 더 많이 진행되었다. 또한 신경성장인자 투여 유무에 의한 차이는 정량이식의 방법에 의한 차이보다 더 큰 것을 볼 수 있었다. 특히 수술 후 2주에는 대조군과 신경성장인자 투여한 군, 생리식염수를 투여한 군 사이에 많은 차이를 보여주고 있으나, 4주가 되면서 신경성장인자를 투여한 군은 대조군과 별 차이가 없을 정도로 수초화가 증가에 급격히 증가하는 양상을 보여 주었다. 그러나 8주 및 12주에는 각 군과의 차이는 감소하여 비슷해지는 양상을 보였다(Table 2, Fig. 3, 4).

Table 2. Percentage of myelinated nerve fiber (%)

<table>
<thead>
<tr>
<th></th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>65</td>
<td>73</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>Group II</td>
<td>0</td>
<td>18</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>Group III</td>
<td>1</td>
<td>33</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>Group IV</td>
<td>8</td>
<td>65</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Group V</td>
<td>25</td>
<td>72</td>
<td>76</td>
<td>82</td>
</tr>
</tbody>
</table>

Fig. 3. A: The unmyelinated (white arrow) and myelinated (black arrow) fibers are intermingled in control group and the myelinated fiber is occupied 65% at postoperative 2 weeks. (semi-thin, toluidine blue stain, ×400). B: Inside-in vein graft with normal saline infiltration. There are few regenerating nerve fibers and no myelinated fiber at postoperative 2 weeks. (semi-thin, toluidine blue stain, ×400). C: Inside-out vein graft with nerve growth factor infiltration. There are many regenerating nerve fibers and more increased myelinated fiber (25%) at postoperative 2 weeks. (semi-thin, toluidine blue stain, ×400).

Fig. 4. Percentage of the myelinated nerve fiber was higher in inside-out vein grafted group than inside-in vein grafted group, and also higher in nerve growth factor infiltration group than normal saline infiltration group. These differences were statistically significant at 2 and 4 weeks after operation and also decreased after 8 weeks. There were no significant statistical difference at 12 weeks.
Table 3. Thickness of myelin sheath (mm)

<table>
<thead>
<tr>
<th></th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>2.5±0.4</td>
<td>3.1±0.1</td>
<td>4.4±0.1</td>
<td>4.8±0.1</td>
</tr>
<tr>
<td>Group II</td>
<td>0.0±0.0</td>
<td>0.5±0.1</td>
<td>2.8±0.1</td>
<td>2.5±0.1</td>
</tr>
<tr>
<td>Group III</td>
<td>0.7±0.1</td>
<td>1.5±0.1</td>
<td>2.5±0.1</td>
<td>2.7±0.1</td>
</tr>
<tr>
<td>Group IV</td>
<td>1.8±0.1</td>
<td>2.1±0.1</td>
<td>3.7±0.1</td>
<td>3.2±0.1</td>
</tr>
<tr>
<td>Group V</td>
<td>2.6±0.2</td>
<td>4.4±0.1</td>
<td>4.3±0.2</td>
<td>4.7±0.1</td>
</tr>
</tbody>
</table>

2) 투과 전자현미경 소견

Inside-out vein graft를 시행한 군에서 inside-in vein graft를 시행한 군보다 수초의 두께가 두꺼웠으나 통계적 의미는 없었으며, 신경성장인자를 투여한 군에서 생리시험수를 투여한 군보다 수초의 두께가 두꺼웠다(<0.05) (Table 3, Fig. 5, 6).

고찰

말초신경의 손상에 대한 치료방법 중 가장 일반적으로 사용되는 속식은 일차적 복합술로 널리 사용되고 있다. 그러나 신경손상의 정도가 심하여 결손을 초래하게 될 경우 신경의 결손부위를 복합부위의 긴장 없이 치료할 수 있는 방법으로는 신경의 가동화(mobilization), 신경전위(transposition), 관절의 골극(joint flexion), 골 단축(bone shortening) 및 신경이식(nerve graft) 등의 방법이 있으며 그중 신경이식은 널리 쓰이는 방법이다. 그

Fig. 5. A: Thick myelin sheath (average thickness: 3.1 mm) in control group at postoperative 4 weeks. (uranyl acetate and lead citrate stain, ×2,500). B: Inside-in vein graft with normal saline infiltration. Very thin myelin sheath (average thickness: 0.5 mm) at postoperative 4 weeks. (uranyl acetate and lead citrate stain, ×2,500). C: Inside-out vein graft with nerve growth factor infiltration. Thick myelin sheath (average thickness: 4.4 mm) is noted at postoperative 4 weeks. (uranyl acetate and lead citrate stain, ×2,500).
지며 이들 임상에 적용했을 때 자가신경이식에 의한 공여부의 소실 없이 좋은 결과를 얻을 수 있으리라 생각한다.

결 론

신경결손에 시행하는 정맥이식술은 결손된 신경의 근위부로부터 신경재생을 유도하는 동로로서의 역할을 풀어가시며 또한 자가신경이식술의 좋은 대체물로 사료되며, 특히 inside-out vein graft 방법은 inside-in vein graft 방법보다, 그리고 이식 정맥내 신경재생을 트루어한 경우가 생리적혈류를 트루어한 경우보다 조기에 많은 신경의 재생을 유도하는 효과적인 방법으로 생각된다. 따라서 향후 신경결손의 경우 inside-out vein graft 방법에 신경결손을 트루어하는 수술 치료법을 임상에 적용하 면 좀더 조기에 신경재생을 유도할 수 있고, 이에 발전이환된 원위부 근육에 재신경화도 일찍 일어나 근육의 움직임을 최소화 할 수 있으리라 사료한다.

참고문헌

Abstract

The Study of Nerve Regeneration with Infiltration of Normal Saline and Nerve Growth Factor After Vein Graft to the Resected Sciatic Nerve

Kwang-Suk Lee, M.D., Jae-Hak Shim, M.D., Tae-Ha Kim, M.D., and Sung-Dae Ju, M.D.
Department of Orthopaedic Surgery, Korea University, Seoul, Korea

Purpose: To compare the effect of nerve regeneration with infiltration of normal saline and nerve growth factor after vein graft to the resected sciatic nerve of rat.

Materials and Methods: Eighty Sprague-Dawley rats were divided into five experimental groups: orthotopic nerve graft as control group, inside-in vein graft with normal saline infiltration, inside-out vein graft with normal saline infiltration, inside-in vein graft with nerve growth factor infiltration and inside-out vein graft with nerve growth factor infiltration group. Animals of each group were sacrificed after electromyography at 2, 4, 8 and 12 weeks after operation. Also the light microscopy and transmission electron microscopy were performed to observe histologic change of grafted sites.

Results: This study demonstrates that autogenous vein graft serves as a conduit for nerve regeneration, and inside-out vein graft technique and nerve growth factor induce faster and more numerous axonal regeneration and earlier recovery of muscle power.

Conclusion: Inside-out vein graft with nerve growth factor infiltration is supposed to be a promising technique to take the place of autogenous nerve graft.

Key Words: Defect of nerve, Inside-out vein graft, Nerve growth factor

Address reprint requests to
Jae-Hak Shim, M.D.
Department of Orthopaedic Surgery, Korea University, Guro Hospital
80 Guro-dong, Guro-gu, Seoul 153-060, Korea
Tel: +82-2-818-6681, Fax: +82-2-837-4347
E-mail: osshim5@hanmail.net