4절의 반전양관과 박진을 이용한 전방섬자인대 재건술에서
대퇴골에 고정하는 두 방법의 임상적 비교
- 생체흡수형 간섭사자못과 Semi-Fix고정법 -

성균관의과대학 삼성서울병원 정형의과학교실

안진환 · 하철원 · 김필수

서 론

전방심자인대의 파열에 있어서 자가이식술을 이용한 재건술이 습관절의 안정성을 얻을 수 있는 보편적이고 쉬운 방법이며, 골-슬개간-골(bone-patellar tendon-bone)과 반전양관-박진(semicolonensus-gracilis tendon)이 이식관으로써 여러 가지 장점이 있기 때문에 가장 많이 사용되고 있다. 골-슬개간-골이 이식된 강도가 훨씬하고 간섭사자못골을 견고하게 고정할 수 있어 조기에 관절운동이 가능하며, 골과 그 주변의 합치유함은 장점이 있다. 반전양관-박진의 이식 후 슬개-대퇴관절의 동통과 대퇴신진력의 약화, 슬개관절의 문제가 발생할 수 있다.

슬개관절(� hamstring)은 반전양관과 박진의 사용은 Macey 등이 오래된 방법이 개발되었고, 반전양관의 강도는 슬개관절보다 약하거나 강성도(Stiffness)는 슬개관절에 비해 정상 전방심자인대와 더 비슷하게 작용하는 장점이 있다. 반전양관이 이식된 결과에 따른 안정성은 슬개관절보다 약하고, 반전양관은 이식된 결과에 따라, 감각신경의 손상이 없으며, 슬개-대퇴관절의 동통이 없고 공명조직에 의한 기능 손상이 적다는 등의 장점이 있다. 그러나 반전양관을 이용한 이식술은 대퇴골에 고정이 어렵다고 알려져 있다.

반전양관-박진을 고정하는 방법에는 Endobutton을 이용한 고정법, 교차 강선 고정법의 일종인 Semi-Fix를 이용한 고정법, 이식관을 간섭사자못 고정하는 방법, Ligament anchor(LA)나사 방법 등이 알려져 있지만 이 중 금속으로 만든 간섭사자못(Titanium Interference Screws)은 이식관에 손상을 줄 여려가 있고 나사못이 생체에 계속 남아 있음을 인해 재수술과 자기공명영상(MRI)에 영향을 줄 수 있어 단점으로 지적되고 있다. 생체흡수형 간섭사자못은 시간이 지남에 따라 자가골로 대체되는 점, 이식관의 손상을 적게 줄 수 있다는 점, 수술 후 추시 관찰 도중 자기공명영상에서 간섭관절에 없는 점 등의 장점이 있으나 그의 생물학적 기능성에 의심이 있어 아직 많이 사용하지 않고 있는 것이 현실이다. 그러나 Barber 등은 110명의 환자를 대상으로 슬개관절을 이용한 전방심자인대 재건술에서 생체흡수형 간섭사자못은 금속으로 만든 간섭사자못과 비교하여 단기간의 결과가 미흡하지만 임상적 차이가 없다고 보고하였으며, 그 후 Carborn 등은 인간사체 생체력학실습(human cadaveric biomechanical test)에서 골-슬개간-골 이식물을 이용한 전방심자인대재건술을 시행하여 금속으로 만든 간섭사자못과 생체흡수형 간섭사자못의 대퇴골에의 고정력을 비교 분석하였으며, 인장력 300 뉴턴(Newton)이하에서 두 군 모두에서 파열이 없었으며, 두 군에서 통계학적 유의한 차이가 없었다고 보고하였다. 한편 Semi-Fix를 이용한 고정법은 대퇴골의 확장에 무리하게 시술할 수 있어 수술 재건술(Revision ACL reconstruction)에 적합할 뿐

※통신저자 : 안 진 환
서울시 강남구 일원동 50번지
성균관의대 삼성서울병원 정형외과

* 본 연구는 삼성서울병원 임상연구비 지원으로 이루어졌음.
만 아니라 이식건에 손상을 주지 않고 고정할 수 있으며, 제거하기가 간단하다는 등 장점이 있어 최근 사용되고 있는 술식이나 이에 대한 임상적 보고는 미비한 설정이다.

이에 저자들은 반전장건-박건을 이용한 이식건의 대퇴라는 고정방법으로서 생체흡수형 간섭나사못과 Semi-Fix를 이용한 고정법을 임상적으로 비교하였고 이 고정법들의 임상적 유용성을 알아보고자 하였다.

FIGURE 1-A,B. Bio-interference screw used for femoral fixation.
C,D. Semi-Fix technique used for femoral fixation and then lateral collateral reconstrucion done.
연구 대상 및 방법

본 연구는 1996년 8월부터 1998년 1월까지 4월의 반관절연관과 꼴곡을 이용한 관절적 반관절의 인대 재건술을 시행받은 24명의 환자를 대상으로 하였다. 이 중 14례는 생체흡수형 간접나사못(Bioscrew\(^\text{®}\), Linvatec, USA)을 이용하여 대퇴골에 고정하였고 다른 10례는 Semi-Fix\(^\text{®}\) (Arthrex, USA)을 이용하여 대퇴골에 고정하였다(Fig. 1). 생체흡수형 간접나사못을 이용하여 고정된 군은 난자 12례, 여자 2례였고 평균 연령은 26.4세(18~56세)였으며, Semi-Fix를 이용한 고정법을 사용한 군은 난자 5례, 여자 5례였고 평균 연령은 32.6세(21~45세)였다. 동반된 손상은 양 군에서 유사하였고(Table 1), 동반 손상의 치료로서 생체흡수형 간접나사못을 사용한 군은 6예에서 연골판 부분 또는 아전 절제술 (partial or subtotal meniscectomy)을 시행받았고, 1례에서 연골판 흡합술 (meniscal repair)을 시행 받았으며, Semi-Fix를 이용한 고정법을 사용한 군에서는 4례가 연골판 부분 또는 아전 절제술, 1례가 연골판 흡합술, 1례가 외측아래연골관절(rear lateral collateral ligament reconstruction)을 시행받았다(Fig. 1.C-D). 생체흡수형 간접나사못을 사용한 군의 평균 추시기간은 13.8개월(11~18개월)이었으며 Semi-Fix를 이용한 고정법을 사용한 군의 평균 추시기간은 10.6개월(6~16개월)이었다. 손상을 입은 난자가 수술 영역까지 질긴 기간은 생체흡수형 간접나사못을 사용한 군에서 평균 33.6개월(2~133개월), Semi-Fix를 이용한 고정법에서는 평균 45.8개월(2~120개월)이었다. 모든 환자에서 대퇴골 고정은 생체흡수형 간접나사못을 쓰거나 Semi-Fix를 이용한 고정법을 이용하였다. 경골 고정은 생체흡수형 간접나사못을 사용한 군에서 1례만이 피질 골나사못을 사용하였고 나머지 모두 생체흡수형 간접나사못을 이용하여 고정하였고 추가고정으로 7례에서 는 피질골 나사못을 이용하여 고정하였으며 4례에서 는 갯쇠(Saddle)를 이용하여 고정하였다(Fig. 1-

A,B). Semi-Fix를 이용한 군에서는 2례에서 해면 골 나사못을 이용하여 고정하였으며 나머지 모두 피질골 나사못을 이용하여 고정하였다. 숲 후 대퇴골 내의 확장징을 측정하기 위해 전후방 및 폐면 방사 진 사진을 찍어 환경성 가상지리의 가장 넓은 부위를 계측하고 이를 평균하여 나온 값을 평균 12.2개월 후 완료하였다.

이 양군의 술후와 술후의 Lysholm 점수, HSS점 수, KT 2000 관절적 검사, 방사선 사진상의 대퇴골 타날의 확장징도를 t-test를 이용하여 통계적으로 비교 분석하였다. 그 밖의 Lachmann 검사, Pivotshift 검사, 전방정적검사, 습관절 운동범위를 비교 하였다.

결 과

생체흡수형 간접나사못을 이용한 군과 Semi-Fix를 이용한 군의 상반, 하반, 신장, 신장 등의 차이가 없었다. 양 군에서 최종 추시시 Lysholm 점수는 각각 96.1±2.65 및 94.1±5.10, HSS 점수는 각각 98.6±1.99점 및 98.1±2.69점, KT 2000 관절적 검사는 각각 1.3±2.13mm 및 1.2±1.89mm로 비슷한 결과를 보였으며 통계학적으로 유의한 차이를 보이지 않았다(Table 2, 3). 최종 추시시 생체흡수형 간접나사못을 사용한 모든 예에서 관절운동 범위에 제한이 없었으며 Semi-Fix를 이용한 고정법을 한 환자의 2례에서 골절이 제한되었다. 1례는 골절이 90도까지 가능하였으나(술후 36개월 추시) 또 1례는 95도까지 가능하였으나(술후 6개월 추시) 신진 제한은 없었다.

Table 2. Lysholm Scores Comparison before and after ACL reconstruction

<table>
<thead>
<tr>
<th></th>
<th>Bio-interference screw</th>
<th>Semi-Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.5 ± 13 (52 ~ 95)</td>
<td>96.1 ± 2.65 (92 ~ 100)</td>
<td>83.6 ± 1 (65 ~ 99)</td>
</tr>
</tbody>
</table>

(P>0.05)

Table 3. KT 2000 maximal manual side to side difference

<table>
<thead>
<tr>
<th></th>
<th>Bio-interference screw</th>
<th>Semi-Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 ± 1.88mm (3 ~ 19)</td>
<td>1.3 ± 2.13mm (1 ~ 5)</td>
<td>9.1 ± 2.13mm (3 ~ 20)</td>
</tr>
</tbody>
</table>

(P>0.05)
최종 추시한 전방전위검사와 Pivot-shift 검사는 수술 받은 모든 환자에서 음성이었으며 Lachmann 검사는 양 군 각각 1명에서 '1' 소견을 보였다 (Table 4, 5).

양 군에서 대퇴버널의 확장 정도는 수술 직후와 비교하여 최종 추시시 각각 2.51±10.3mm 및 1.95±2.33mm의 확장된 소견을 보였으며 통계학적으로 유의한 차이는 보이지 않았다 (Table 6). 생체흡수형 간섭나사못을 이용하여 고정한 후 3개월이 지난 추시 방사선학적 검사에서 수술 직후 방사선사진에서 보였던 어두웠던 대퇴버널음영은 밝은 음영으로 대체되어였고 1년이 지난 추시 방사선사진에서 자가 콜로 대체되어 가는 소견을 볼 수 있었다 (Fig. 2). 끝절, 감염을 비롯한 다른 합병증은 양 군에서 모두 관찰되지 않았다. 이차 관절경 검사를 시행한 4례에서 이식된을 관찰한 바 전례에서 양호하게 혈관생식 성이 이루어지고 있음을 관찰하였다. 이차 관절경 검사를 시행한 1례에서 Cyclops 병변이 생겨있어 제거하였다. 그리고 수술 도중 1례에서 Semi Fix 를 이용한 고정에 실패하여 생체흡수형 간섭나사못으로 대체한 경우가 있었으며 결과는 양호하였다.

Table 4. Pivot-shift test Comparison before and after ACL reconstruction

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>+1*</th>
<th>+2†</th>
<th>+3‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-interference screws</td>
<td>preop 0 7 5 2</td>
<td>postop 14 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-Fix technique</td>
<td>preop 1 5 4 0</td>
<td>postop 10 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* be graded a slide
† be graded a jump
‡ be graded a temporary locking

Table 5. Lachmann test Comparison before and after ACL reconstruction

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>+1*</th>
<th>+2†</th>
<th>+3‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-interference screws</td>
<td>Preop 0 7 5 2</td>
<td>Postop 13 1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-Fix technique</td>
<td>Preop 1 5 4 0</td>
<td>Postop 9 1 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* is an anterior translation of less than 0.5cm
† is an anterior translation of 0.5 to 1cm
‡ is an anterior translation more than 1cm

Table 6. Enlargement of Femoral tunnel width after ACL reconstruction

<table>
<thead>
<tr>
<th></th>
<th>Mean Difference (mm)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-interference screw</td>
<td>2.51±1.03</td>
<td>1.3 ~ 5.3</td>
</tr>
<tr>
<td>Semi-Fix technique</td>
<td>1.95±2.33</td>
<td>0.6 ~ 7.9</td>
</tr>
</tbody>
</table>

(P>0.05)

FIGURE 2. There is no tunnel enlargement and new bone formation around the bioscrew 1 year after ACL reconstruction using hamstring double loops compared with Fig. 1A and Fig. 1B.
고찰

대퇴골에 반전연간-박간을 고정하는 방법으로 사용되어 왔던 고정법에 대한 비교를 해보면 Endobutton을 이용한 고정술은 유도편을 경골터널, 관절강, 대퇴터널을 지나 대퇴외파를 통과시키는 후 4.5 mm 드릴로 관통해야 하기 때문에 새로운 부위결개와 신진을 손상하는 문제 및 대퇴하부에 통중을 유발할 수 있고, Semi fix 술식은 술관절의 상부외측에서 Semi-Fix 유도관의 유도를 따라 유도편을 삽입하여 대퇴골에 이로 삽입된 이식관의 double loop 사이로 유도편이 삽입되도록 하고 이를 따라 Semi-Fix 나사로 삽입하기 때문에 별도의 외부 절개가 필요하다는 단점이 있는 반면에 대퇴터널에 직접 고정하지 않기 때문에 몇 번의 수술로 대퇴터널이 확장된 수술 재건술의 경우도 효과적으로 고정할 수 있고 나사못 제거가 쉬운 장점이 있다. 금속으로 만든 간첩나사못 고정법은 골-슬관절-골 이식에서 가장 많이 사용하는 고정방법이기 때문에 반전연간-박간을 이용한 이식관의 문제점은 대퇴터널이 확장된 상태에서는 사용이 불가능하다는 점과 이식관에 직접적인 손상을 가할 수 있다는 점. 수술 후 자기 공명 영상을 할 수 없는 점 등이 문제점으로 지적될 수 있다.33. 그러나 최근 사용중인 생체흡수형 간첩나사못은 금속으로 만든 간첩나사못에 비해 강성을 가하기 때문에 이식관에 적게 손상을 주 뿐만 아니라 시간이 지나면 자가골로 대체되기 때문에 다시 나사못 제거술에 드는 부담을 줄일 수 있어 많은 관심을 모아오고 있으며 많은 연구가 진행중이다.34, 35. 그리고 예비식이기는 하지만 생체역학적으로 안정하다는 보고가 나온 바 있다.36.

Stapleton 등34에 따르면 골-슬관절-골을 틀어놓은 간첩나사로 고정한 방법에서 평균 최대 견인장력 (Tensile failure strength)은 1333.4±148.5 뉴톤이었으며, 생체흡수성 나사못으로 고정한 방법에서는 평균 1310.01±168.9 뉴톤으로, 두 군에서의 실험양상은 대부분이 간첩나사의 위치변화 없이 골편이 대퇴골에서 빠져 나오는 유사한 양상을 보였으며, 금속으로 만든 간첩나사가 더 견고하다고 실험 후 1년 상생활에 필요한 정도의 견인장력에는 얕은 나무 터라 없이 견디는 것으로 평가했다. Rupp 등37에 따르면 슬관절을 생체흡수성 간첩나사못으로 고정한 방법에서는 평균 최대 견인장력은 820.3±104.5 뉴톤, Semi Fix 나사로 고정한 방법에서는 평균 1405.9±135.1 뉴톤이었다고 보고하였다. 실험양상은 슬관절을 생체흡수성 간첩나사못으로 고정한 군에서는 전례에서 간첩나사의 위치변화 없이 이식관이 대퇴골에서 빠져 나오는 현상을 보였으며, Semi Fix를 이용한 고정법에서는 나사의 위치변화 없이 나사가 휘어지는 현상을 보였다고 한다. 이로 보아 슬관절을 이용한 방법에서의 견인장력에서는 Semi Fix를 이용한 고정법이 생체흡수성 간첩나사못보다 더 견고하다는 것을 알 수 있었다. 그러나 저자들의 임상적 결과는 양 군 다 유의한 차이가 없었고 이는 술 후 재활기간동안 특별히 생역학 실험처럼 강한 견인장력을 받지 않았기 때문이라고 생각된다.

생체흡수형 간첩나사못은 poly L-lactic acid (PLA)로부터 만들어지며 가수분해에 의해서 분해되어가고 이때 발생한 첫산(Lactic acid)은 펄프에 의해서 배출된다. 가수분해는 공용해(Osteolysis)나 그 밖의 골반응과 두관골로 보고되고 있다. 반감기는 6개월 정도로 알려져 있고 이 물질들은 48개월이 지나면 분말(Powder)로 변하여 변성(degradation)되면서 자가골로 대체되다고 한다.38, Barber 등39는 자가골로 대체되어 가는 현상을 숭후 3개월 때부터 관찰할 수 있다고 하였다. 저자들의 예에서 생체흡수형 간첩나사못을 사용한 군에서 초기에 어두운 응영으로 보였던 이식 건 주위는 시간이 지남에 따라 점차 밝은 응영으로 보이기 시작했다 (Fig. 2). 추시기간 중에 촬영한 MRI에서도 생체흡수형 간첩나사못 부분은 자가골로 대체되어 가고 있으며 재건인대는 잘 유지되고 있었다 (Fig. 3).

PLA에 대한 파민반응은 보고된 바는 없으나 저자
들의 예에서는 한 명의 환자가 솔 후 계속해서 무릎
이 봉고 될이 오르는 등의 증상이 있어 검열 내지는
파민반응에 의심되었으며 이로 인하여 이식물을 제거
한 바 있다. 균 배양검사는 음성이었고 병리검사는
유성 염증기의 소견을 보였다. 이 환자는 다른 고정
법을 사용하였기에 저자들의 예에서는 제외하였다.
Barber 등은 자신의 예에서 끔루반응이나 클럽
터널저항은 없었다고 보고하였으며 유일한 문제
점은 대퇴터널에 삽입시에 적절기동 간접각사토의
파손이라고 했다. 그러나 경골 고정시 사용했던 생체
흡수형 간접각사토의 파손이 일어나지 않았던 것으로
미루어 보면 파손의 가장 큰 이유는 대퇴골 터널에
고정시 시술자의 미숙 때문이라고 설명했다. 저자들
의 예에서는 생체흡수형 나사못 삽입시 파손된 예
는 없었다. 대퇴골의 확장정도에 대한 저자들의 결
과는 2.11mm로 국내의 다른 보고보다 조금 낮아진
결과이다. 이에 대해서는 추시 관찰을 더 해야 할 것
으로 사료된다.

결 론

저자들은 생체흡수형 간접각사토와 Semi-Fix를 이
용한 고정법으로 전방십자인대 재건술을 시행한 24
례의 임상적 결과를 분석해 보았으며, 임상적 결과는
양 군에서 모두 우수하였고 통계학적 차이가 없었다.
생체흡수형 간접각사토와 Semi-Fix를 이용한 고정
법은 슬관절을 이용한 전방십자인대 재건술에 유용하
게 사용될 수 있을 것으로 사료된다.

REFERENCES

1) Ahn JH : Arthroscopic ACL reconstruction using
BPTB autograft. J of Korean Knee Surgery 7:117-
125, 1995.
2) Barber FA, Elrod BF, McGuire DA and Paulos
LE : Preliminary results of an absorbable interfere-
3) Caborn DNM, Urban WP, Johnson D, Nyland J
and Pienkowski D : Biomechanical comparison
between bioscrew and titanium alloy interference
screws for BPTB graft fixation in ACL reconstruc-
4) Callaway G, Nicholas S, Cavanaugh j, Cavo C,
Wickiwicz T and Warren R : Hamstring augmenta-
tion versus patellar tendon reconstruction of acute
anterior cruciate ligament disruption: a randomized
prospective study, AAOS annual meeting. New
5) Kyung HS, Ihn JC and Park CS : Bone tunnel
enlargement after endoscopic ACL reconstruction by
autogenous BPTB graft. J of Korean Orthop Surgery,
6) Larson RY and Ericsen D : Complication in the
use hamstring tendons for anterior cruciate ligament
reconstruction. Sports Medicine and Arthroscopy
7) Macey J : New operative procedures for the repair
of rupture cruciate ligaments of the knee joint. Surg
8) McGuire DA, Hendricks S, Barber FA, Elrod BF
and Paulos LF : The use of bioabsorbable interfer-
ce screws in anterior cruciate ligament reconstruc-
tion: Midterm follow-up results. 6th Annual Meeting
9) Rosenberg TD, Brown GC and Defner KT : An-
terior cruciate ligament reconstruction with a quadru-
pled semitendinosus autograft. Sports Medicine and
10) Ruopp S, Krauss PW and Frisch EW : Fixation
strength of a biodegradable interference screw and a
press-fit technique in anterior cruciate ligament reconstruc-
tion with a BPTB graft. Arthroscopy, 13:
11) Song EK and Park DW : Endoscopic ACL recon-
struction. J of Korean Orthop Surgery, 29:1767-
12) Stahelin AC, Weiler A, Rufenacht H, Hoffman R,
Geissman A and Feinstein R : Clinical degradation
and biocompatibility of different bioabsorbable inter-
ference screws: A report of six cases. Arthroscopy,
13(2) : 238-244, 1997.
13) Weiler A, Hoffman R, Stahelin A, Bail H,
Raschke M and Sudkamp NP : Semitendinosus graft
fixation with bioabsorbable interference screws, 43rd
annual meeting. Orthopaedic Research Society, San
14) Stapleton TR, Curd DT and Baker CL : Failure
strength of patellar tendon, quadriceps tendon and
hamstring tendon grafts in ACL reconstruction : a
biomechanical and histologic analysis. Presented at
Society of Military Orthopedic Surgeons Annual
meeting, Vail, Co, 1995.
— Abstract —

Comparison of the Clinical Results of the Fixation Techniques to Femur in ACL Reconstruction using Hamstring Double-Loops
- Bioscrews vs. Semi-Fix -

Jin-Hwan Ahn, M.D., Chul-Won Ha, M.D., and Peel-Soo Kim, M.D.

Department of Orthopedic Surgery, Samsung Medical Center
Sungkyunkwan University School of Medicine, Seoul, Korea

Purpose: In order to know the clinical usefulness of the Bioscrew® (Linvatec, USA) and the Semi-Fix® (Arthrex, USA) technique for femoral fixation in ACL reconstruction using hamstring double loops, we scrutinized and compared the 24 knees.

Materials and Methods: We compared Lysholm score, Hospital for Special Surgery (HSS) knee rating scores, Lachman tests, Pivot-Shift tests and KT side to side difference in 24 knees after arthroscopic ACL reconstruction using hamstring double loops from August 1996 to January 1998. We have used fourteen bio-absorbable interference screws and ten Semi-fix’s for femoral tunnel fixation.

Results: We took the data; the Lysholm score of 96.1 and 94.1; HSS score of 98.6 and 98.1; KT difference of 1.3 ± 2.13(㎜) and 1.2 ± 1.89(㎜) after ACL reconstruction using Bioscrew or Semi-Fix respectively. Femoral tunnel enlargement showed 2.51 ± 1.03(㎜) and 1.95 ± 2.33(㎜) respectively. And we got the similar results of Pivot-shift test, Lachman test and anterior drawer test after reconstructive surgery.

Conclusion: Since we got the similar good data in comparative clinical study between the Bioscrews and the Semi-Fix technique, we anticipatd that either the use of Semi-fix technique or the biodegradable interference screws would be bright in the fixation to femoral tunnel in ACL reconstruction using hamstring double loops.

Key Words: Knee, Anterior cruciate ligament (ACL), Arthroscopic ACL reconstruction, Hamstring double loops. bio-interference screw, Semi-fix technique