후두경추 유합술

박종범・김기원・임용한

가톨릭대학교 의과대학 의정부성모병원 정형외과

Occipitocervical Fusion

Jong-Beom Park, M.D., Ki-Won Kim, M.D., Yong In, M.D. and Han Chang, M.D.

Department of Orthopedic Surgery, Uijongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Korea

서론

후두경추 유합술은 신경학적 손상을 예방하고 축성골격기능을 항상시키는 목적으로 두개골과 등 또는 그 이상의 경추 분절을 안정화시키는 술식이다. 1927년Foerster가 처음 비골 이식을 이용한 후두경추 유합술을 보고한 이래 전방과 후방 도달법을 이용한 다양한 술식들이 보고되었다. 초기에 시행된 대부분의 술식들은 내고정 없이 자가골을 후두경추 접합부에 외재 이식(onlay graft) 하였기 때문에 숭후 상당 기간 tong traction 또는 halo 보조기에 의한 추가적인 외교정이 필요하였다. 따라서 장기간의 치료가 필요하며, 희귀한 여러 가지 합병증들이 나타났다. 또한 대부분 전신적인 의학적의 낮은 골유합율을 좀 더 견고한 이식골의 고정을 위해 장선, cable, 나사못, mesh, methyl methacrylate, 금속판 등을 고정기기로 사용하게 되었다. 이러한 내고정기기의 사용은 축성골격기능을 유지하고 골유합율을 증가시키고, 변형의 교정을 가능하게 하는 장점이 있지만, 이에 따른 수술의 복잡성, 감염 및 잠재적 신경학적 손상의 위험성도 증가하였다.

후두경추 유합술의 적응증

후두경추 유합술은 신경학적 손상을 동반 또는 동반하지 않은 후외상성 후두경추 불안정성(환측 또는 축측 골절과 후두경추 탈구), 관절염 또는 염증성 질환에 의한 후두경추 불안정성, 보존적 치료에 반응하지 않는 basilar invagination에 의한 난치성 동통, 신천성 기형, 전이성 증상 또는 감염에 의한 과거 또는 기능 손실에 의한 후두경추 불안정성 등이 적응 대상이 된다. 특히 류마토이드 관절염에 의한 cranial settling이 있는 경우에 있는 basilar invagination이 있는 경우에는 심한 비교적적인 쥐상골과 후두경추 불안정성을 예방하기 위해 반드시 후두경추 유합술이 조기에 시행되어야 한다. 이러한 후두경추 유합술의 목적은 후두경추 안정화를 통해 동통의 감소, 신경학적 회복, 신경 손상의 악화 예방, 조기 거동 및 간과한 골유합을 얻는 것이다.

후두경추 접합부에 대한 전방 도달법 및 술식

대부분의 후두경추 유합술은 후방 도달법을 이용하여 안전하고도 효과적으로 이루어 질 수 있다. 그러나, 신천성 기형, 류마토이드 관절염으로 이미 광범위 후궁 절

Address reprint requests to
Jong-Beom Park, M.D.
Department of Orthopedic Surgery, Uijongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
#65-1 Kumho-dong, Uijongbu-si, Kyunggi-do, 480-130, Korea,
Tel : 82-31-820-3594, Fax : 82-31-8347-3671, E-mail : spinepjh@cmuc.cuk.ac.kr

- 477 -
제습을 받은 경우와 같은 의인성 후방 구조물의 결손, 외상성 사지마비, 전이성 중앙, 고정된 골극 변형 또는 유함하려는 경우의 습자에 제한하려는 시도가 있는 경우에는 전방 도달법을 이용하여 후두경추 연합술을 시도할 수 있다. 이러한 전방 도달법에는 전방, 전외측 또는 외측 후두골, 경인두, 하악 점골과 tongue-splitting 도달법등이 포함되며, 경구강 및 후두골 도달법이 주로 이용된다.

경구강 도달법을 이용한 골이식은 감염율이 30~50%로 높고 경막이 꼭워질 경우 뇌막염이 유 수 있어 골이식이 필요한 수술은 이 도달법을 가능한 사용하지 않아야 한다. 따라서 후두경추 절합부에 골이식이 필요한 경우에는 후두골 도달법을 주로 사용하는데 감염율은 5% 이하로 보고되고 있다. 경두골의 내측 혹은 외측을 통해 후두골 기저부에서부터 3~4경추의 전방까지 도달할 수 있으며, 경구강 내외, 외측 모두 경구강 부위까지 연계를 연장할 수 있다.

후두경추 절합부에 대한 후방 도달법 및 술식

 대부분의 외상성 또는 비외상성 후두경추 불안정성은 후방 도달법에 의해 효과적으로 안정화될 수 있다. 이러한 안정화는 두개골, 극돌기, 후궁, 후관절 및 외측골을 포함하는 모든 후방 골절 구조물들 통해서 이루어질 수 있다. 전, 후방 장공능에서 제거된 골절부위를 후두경추 절합부에 쉽게 주행(mold) 될 수 있고 즉각적인 안정성을 제공할 수 있다.

가장 일반적으로 사용되는 후두경추 후방 유합술은 강선을 이용한 Wertheim과 Bohlman의 triple wiring 술기 이다(Fig. 1). 이는 후두골의 선천적 flattening이 심한 basilar impression이 있는 환자에서 특히 유용하게 사용될 수 있다. 강선은 비용이 저렴하고 쉽게 구할 수 있다는 장점이 있고, drilled 또는 burred된 구멍을 통해 쉽게 후두골의 내, 외측 table 또는 외측 table을 통과할 수도 있다. External occipital protuberance는 두개골 두개골의 양측 table을 통과하지 않고도 강선을 고정할 수 있는 이상적인 위치이다. 상부 경추를 노출시킬 때에는 추골동맥과 안考え方 가치 없도록 성인에서는 제 1경추의 중심에서 외측으로 1.5cm, 소아에서는 1cm 이상 외측으로 박리하지 않도록 주의해야 한다. 또한 제 2-3경추를 유합하는 경우가 아니라면 이에 골극기간 인대가 손상되지 않도록 조심하여 후방 연부조직의 안정성을 유지하도록 해야 한다.

Luque ring 또는 Hartshell-Ransford rectangle를 이용한 분절 기술(Fig. 2)은 후두경추 절합부에 강한 고정을 제공할 수 있지만 후궁 부하와 흡수된 잠재적 신경학적 합병증이 문제될 수 있다. 이에 따라 최근에는 금속판과 나사못 고정(Roy-Camille 105° plate, AO reconstruction plate) 또는 modified Cotrel-Duboussit(CD) system이 개발되어 사용되고 있다. Roy-Camille는 후두경추 절합부의 후방 contour에 맞도록 105도로 미리 구부러진 금속판을 이용한 후두경추 유합술을 보고하였고,
Fig. 3. Roy-Camille technique of occipitocervical fixation.

Fig. 4. Posterior plating of the occipitocervical spine using AO reconstruction plates overlapping the midline.

 methacrylate의 사용이다. 심한 골다공증 또는 약성 종양이 있는 환자에서 methyl methacrylate에 의해 보강된 지주골 이식과 강선 고정술은 만족할 만한 치료 결과를 보이고 있다6, 7. 하지만 다른 methyl methacrylate는 골유합을 위한 연질을 축소함으로써 관절유합을 방해하고 강선 파괴 및 심부 감염의 위험성을 증가시킬 수 있다. 따라서, methyl methacrylate는 조직성립에 최소량으로 사용되어야 하며 이것은 일시적 보조 고정으로 간주되어야 한다.

이러한 다양한 후두경추 내고정 기기들의 발달에도 불구하고 장기간의 안정성을 보장할 수 있도록 하기 위해 요단과 분리된 경우 후두경추 감고리에 부착된 두 개의 rod plates로 구성되어진다5. 감고리와 함께 후두 claw의 사용은 약간 후두경추의 존재에도 불구하고 종합된 안정성을 제공하지만 골이식을 할 수 있는 표면적의 감소를 초래한다. 후두경추의 양측동영상 후두골의 두께가 7mm 이하일 때는 감고리aturdays, 그 이상인 경우에는 나사못의 사용을 선택한다.

후두경추 유합 동안에 전고한 고정을 얻기 위한 단순한 내고정 방법의 하나는 강선에 의해 보강된 methyl
골(endochondral bone)에 비해 낮은 골 흔수를 보이며 신생골 형성을 동반하는 정기간의 재료화가 가능한 막성골(membranous bone)의 하나인 두개골, 특히 후두골을 이용한 성공적인 후두경추 유합술이 보고되었다. 후두골 이식은 동일한 후방 경추 절개를 연장하여 이식 골을 얻을 수 있고, 수술창을 단일 장소로 극감한으로써 염증의 기회를 줄일 수 있고, 근육부 동통이 없고, 수술 후 환자가 갑의 호흡과 기침을 할 수 있어 복합증을 피할 수 있다는 장점들이 있다.

경추부 전체 운동 범위의 50% 이상이 후두와 제2경추 사이에서 이루어지기 때문에 후두경추 유합술은 환측추 유합술에 비해 두개골 운동을 더욱 감소시킨다. Grob 등 11)에 의하면 후두경추 유합술시 경부의 골극 및 신진 운동의 30% 정도의 감소가 있고(후두경추 부위에서 13도 감소), 10도의 외측 회전과 8도의 외측 굴곡이 감소한다. 유합 불결이 하부 경추로 연장될 경우에는 5~10도 사이의 추가적인 골극 및 신진 운동의 감소를 초래한다. 불유합, 후두경추 감소 또는 나머지 임상적 증상이 있을 수 있는 신경학적 손상이나 척추 동맥 손상과 습후 경추염은 후두경추 유합술에 관련된 또다른 잠재적 합병증이다.

소아에서의 후두경추 유합술

후두경추 유합술은 그동안 소아에서 드물게 시행된 수술로서 외상, 감염, 유소년기 뮤바토이드 관절염, Down 증후군, mucopolysaccharides와 spondyloepiphysial dysplasia 및 환측의 occipitalization등과 연관된 후두경추의 불안정성에서 적응이 된다16). 그러나, 적절한 습후 고정의 어려움, 이식골의 dislodge, 유합의 어려움, 미래의 신경 장애, 체부하적 착탈의 제한 및 선행성 기형 등 이들 소아 환자에서 직면하는 문제들을 인해 척추 외 사무들에게는 어렵고 논란이 많은 문제로 인식되어 왔다. 또한, 종종 부분적으로 연골성인 제1, 2경추의 않은 후방 구조물들은 이러한 수술을 더 어렵게 만든다. 현재 후두경추 불안정성이 있는 환자를 위해 사용되는 가장 일반적인 방법은 contoured loop의 후방한 강선 구조물이다. 그 외 halo 보조기구가 추가적인 고정을 목적으로 사용되기도 한다. 그러나, 이들 방법들은 소아에서 상대적으로 높은 유합의 실패와 halo 보조기구와 관련된 합병증을 빈번하게 유발한다. 이에 일부 저자들은 고강도의 titanium 후두경추 구조물에 병행한 환측 추 transarticular 나사못 고정술이 높은 유합률, halo 보조기구의 불필요성 및 속후 조기 복원이 가능하므로 소아 환자의 어려운 후두경추 불안정성을 치료하는 데 있어 유용하다고 보고하였다17). 그러나, 소아 환자에서의 나사못 고정술은 미래의 척추 성장 잠재력에 대한 의문, 유합 인접 분절에서 이루어낼 수 있는 변형와 함께 이 습기를 하기 위해서는 learning curve의 혼란이 필요하다는 단점이 있다. 그러나, 최근 소아의 후두경추 구조물은 8~10세에 성인의 크기와 형태에 도달하기 때문에 후두경추 유합에 따른 사고의 성장의 제한은 없으며 단지 유합 인접 분절에서 이루어낼 수 있는 문제에 대해서는 경기적인 추시가 필요하다는 보고도 있다18). 따라서, 소아 환자에서도 유합 인접 분절의 문제에 대한 가능성이 있으나 본에 대한 어떤 증거가 없는 한 후두경추 불안정성은 진단이 되면 가능한 한 빨리 신경 조직을 보호하기 위한 후두경추 유합술의 필요성이 우선시 되어야 할 것으로 사료된다.

REFERENCES

